Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6772–6782 | Cite as

Photo-immobilized heparin micropatterns on Ti–O surface: preparation, characterization, and evaluation in vitro

  • Lijuan Lei
  • Chunhui Li
  • Ping Yang
  • Nan Huang
Article

Abstract

In order to harmonize the functions of both anticoagulation and accelerating endothelialization simultaneously, the micropatterns were fabricated by photoimmobilizing heparin, functionalized with a photoreactive moiety, on 3-aminopropylphosphonic acid modified titanium oxide (Ti–O) substrates. The amount of heparin immobilized on the surfaces was determined using the toluidine blue assay. And the surface morphology of the patterns was examined using scanning electron microscopy and surface profiler. The platelet adhesion and endothelial cell behavior in terms of adhesion, proliferation, and orientation were investigated in vitro. It is clear that the heparin patterns can reduce the platelet adhesion, and promote endothelial cells spreading and proliferation compared to nonpatterned heparin sample. Furthermore, the microstripes with appropriate size can induce the cells to elongate and arrange along the stripe direction. This may suggest a new modification method for blood-contacting device.

Keywords

Heparin Platelet Adhesion Blood Compatibility Adhere Platelet Static Water Contact Angle 

Notes

Acknowledgement

This study was jointly supported by Key basic research program of China (no. 2011CB606204), Natural Science Foundation of China (no. 30870629), and NSFC-RGC Joint Research Funding (30831160509).

References

  1. 1.
    Yang ZL, Wang J, Luo RF, Maitz MF, Jing FJ, Sun H, Huang N (2010) Biomaterials 31:2072CrossRefGoogle Scholar
  2. 2.
    Machovich R (1988) Blood vessel wall and thrombosis. CRC Press Inc., Boca RatonGoogle Scholar
  3. 3.
    Belle EV, Tio FO, Couffinhal T, Maillard L, Passeri J, Isner JM (1997) Circulation 95:438CrossRefGoogle Scholar
  4. 4.
    Weber N, Wendel HP, Ziemer G (2002) Biomaterials 23:429CrossRefGoogle Scholar
  5. 5.
    Yamazoe H, Oyane A, Nashima T, Ito A (2010) Mater Sci Eng C 30:812CrossRefGoogle Scholar
  6. 6.
    Liu TY, Lin WC, Huang LY (2005) Biomaterials 26:1437CrossRefGoogle Scholar
  7. 7.
    Kottke-Marchant K, Anderson JM, Umemura Y, Marchant RE (1989) Biomaterials 10:147CrossRefGoogle Scholar
  8. 8.
    Aksoy EA, Hasirci V, Hasirci N (2008) J Bioact Compat Polym 23:505CrossRefGoogle Scholar
  9. 9.
    Weng YJ, Qi F, Huang N, Wang J, Cheng JY, Leng YX (2008) Appl Sur Sci 255:489CrossRefGoogle Scholar
  10. 10.
    Letourneur D, Machy D, Pellé A, Marcon-Bachari E, D’Angelo G, Vogel M, Chaubet F, Michel JB (2002) J Biomed Mater Res 60:94CrossRefGoogle Scholar
  11. 11.
    Murray RD, Deitcher SR, Shah A, Jasper SE, Bashir M, Grimm RA, Klein AL (2001) J Am Soc Echocardiogr 14:200CrossRefGoogle Scholar
  12. 12.
    Ingber DE (1990) Proc Natl Acad Sci USA 87:3579CrossRefGoogle Scholar
  13. 13.
    Beumer S, Ijsseldijk MJ, Degroot PG, Sixma JJ (1994) Blood 84:3724Google Scholar
  14. 14.
    Ni HY, Papalia JM, Degen JL, Wagner DD (2003) Blood 102:3609CrossRefGoogle Scholar
  15. 15.
    Falconnet D, Csucs G, Michelle Grandin H, Textor M (2006) Biomaterials 27:3044CrossRefGoogle Scholar
  16. 16.
    Petersen SB, di Gennaro AK, Neves-Petersen MT, Skovsen E, Parracino A (2010) Appl Opt 49:5344CrossRefGoogle Scholar
  17. 17.
    Parracino A, Gajula GP, di Gennaro AK, Correia M, Neves-Petersen MT, Rafaelsen J, Petersen SB (2011) Biotechnol Bioeng 108:999CrossRefGoogle Scholar
  18. 18.
    Parracino A, Neves-Petersen MT, di Gennaro AK, Pettersson K, Lövgren T, Petersen SB (2010) Protein Sci 19:1751CrossRefGoogle Scholar
  19. 19.
    Ito Y (1999) Biomaterials 20:2333CrossRefGoogle Scholar
  20. 20.
    Ostuni E, Chen CS, Ingber DE, Whitesides GM (2001) Langmuir 17:2828CrossRefGoogle Scholar
  21. 21.
    Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM, Akhyari P, Khademhosseini A (2010) Biomaterials 31:6941CrossRefGoogle Scholar
  22. 22.
    Hwang CM, Park Y, Park JY, Lee K, Sun K, Khademhosseini A, Lee SH (2009) Biomed Microdevices 11:739CrossRefGoogle Scholar
  23. 23.
    Carrell R, Skinner R, Wardell M, Whisstock J (1995) Mol Med Today 1:226CrossRefGoogle Scholar
  24. 24.
    Ragosta M, Karve M, Brezynski D (1999) Am Heart J 137:250CrossRefGoogle Scholar
  25. 25.
    Krupinski K, Basic-Micic M, Lindhoff E, Breddin HK (1990) Blut 61:289CrossRefGoogle Scholar
  26. 26.
    Michanetzis GPA, Katsala N, Missirlis YF (2003) Biomaterials 24:677CrossRefGoogle Scholar
  27. 27.
    Tsyganov I, Maitz MF, Wieser E (2004) Appl Sur Sci 235:156CrossRefGoogle Scholar
  28. 28.
    Gawalt ES, Avaltroni MJ, Koch N, Schwartz J (2001) Langmuir 17:5736CrossRefGoogle Scholar
  29. 29.
    Ni YX, Feng B, Wang JX, Lu X, Qu SX, Weng J (2009) J Mater Sci 44:4031. doi: https://doi.org/10.1007/s10853-009-3562-0 CrossRefGoogle Scholar
  30. 30.
    Lee JH, Jung HW, Kang IK, Lee HB (1994) Biomaterials 15:705CrossRefGoogle Scholar
  31. 31.
    Harsch A, Calderon J, Timmons RB, Gross GW (2000) J Neurosci Methods 98:135CrossRefGoogle Scholar
  32. 32.
    Konno T, Hasuda H, Ishihara K, Ito Y (2005) Biomaterials 26:1381CrossRefGoogle Scholar
  33. 33.
    Bora U, Sharma P, Kannan K, Nahar P (2006) J Biotechnol 126:220CrossRefGoogle Scholar
  34. 34.
    Hinrichs WLJ, ten Hoopen HWM, Wissink MJB, Engbers GHM, Feijen J (1997) J Control Release 45:163CrossRefGoogle Scholar
  35. 35.
    Ding MH, Wang BL, Li L, Zheng YF (2010) Surf Coat Technol 204:2519CrossRefGoogle Scholar
  36. 36.
    Xu M, Qiu J, Lin Y, Shi X, Chen H, Xiao T (2010) Colloids Surf B 80:200CrossRefGoogle Scholar
  37. 37.
    Chen JY, Wan GJ, Leng YX, Yang P, Sun H, Wang J, Huang N (2004) Surf Coat Technol 186:270CrossRefGoogle Scholar
  38. 38.
    Dai ZW, Zou XH, Chen GQ (2009) Biomaterials 30:3075CrossRefGoogle Scholar
  39. 39.
    den Braber ET, de Ruijter JE, Smits HTJ, Ginsel LA, von Recum AF, Jansen JA (1996) Biomaterials 17:1093CrossRefGoogle Scholar
  40. 40.
    Yang SP, Lee TM (2011) J Mater Sci Mater Med. doi:  https://doi.org/10.1007/s10856-011-4255-1 Google Scholar
  41. 41.
    Park YS, Ito Y (2000) Cytotechnology 33:117CrossRefGoogle Scholar
  42. 42.
    Siqueira Petri DF, Wenz G, Schunk P, Schimmel T (1999) Langmuir 15:4520CrossRefGoogle Scholar
  43. 43.
    Quiñones R, Gawalt ES (2007) Langmuir 23:10123CrossRefGoogle Scholar
  44. 44.
    Huang XJ, Guduru D, Xu ZK, Vienken J, Groth T (2011) Macromol Biosci 11:131CrossRefGoogle Scholar
  45. 45.
    Milner KR, Snyder AJ, Siedlecki CA (2006) J Biomed Mater Res A 76:561CrossRefGoogle Scholar
  46. 46.
    Chen JL, Li QL, Chen JY, Chen C, Huang N (2009) Appl Surf Sci 255:6894CrossRefGoogle Scholar
  47. 47.
    Ko TM, Lin JC, Cooper SL (1993) Biomaterials 14:657CrossRefGoogle Scholar
  48. 48.
    Park JB (1984) Biomaterials science and engineering. Plenum Press, New YorkCrossRefGoogle Scholar
  49. 49.
    Rodrigues SN, Gonçalves IC, Martins MCL, Barbosa MA, Ratner BD (2006) Biomaterials 27:5357CrossRefGoogle Scholar
  50. 50.
    Sharma CP (1994) Bull Mater Sci 7:1317CrossRefGoogle Scholar
  51. 51.
    Sagnella S, Mai-Ngam K (2005) Colloids Surf B 42:147CrossRefGoogle Scholar
  52. 52.
    Huang XJ, Erdtmann M, Keller R, Baumann H (1994) Biomaterials 15:1043CrossRefGoogle Scholar
  53. 53.
    Sanchez J, Elgue G, Riesenfeld J, Olsson P (1995) J Biomed Mater Res 29:655CrossRefGoogle Scholar
  54. 54.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1998) Biotechnol Prog 14:356CrossRefGoogle Scholar
  55. 55.
    Qu XH, Wu Q, Chen GQ (2006) J Biomater Sci Polymer Edn 17:1107CrossRefGoogle Scholar
  56. 56.
    Qiu Q, Sayer M, Kawaja M, Shen X, Davies JE (1998) J Biomed Mater Res 42:117CrossRefGoogle Scholar
  57. 57.
    García AJ, Boettiger D (1999) Biomaterials 20:2427CrossRefGoogle Scholar
  58. 58.
    Lee JH, Lee JW, Khang G, Lee HB (1997) Biomaterials 18:351CrossRefGoogle Scholar
  59. 59.
    Sanborn SL, Murugesan G, Marchant RE, Kottke-Marchant K (2002) Biomaterials 23:1CrossRefGoogle Scholar
  60. 60.
    Wan YQ, Yang J, Yang JL, Bei JZ, Wang SG (2003) Biomaterials 24:3757CrossRefGoogle Scholar
  61. 61.
    Wissink MJB, Beernink R, Pieper JS, Poot AA, Engber GHM, Beugeling T, van Aken WG, Feijen J (2001) Biomaterials 22:151CrossRefGoogle Scholar
  62. 62.
    Meng S, Liu ZJ, Shen L, Guo Z, Chou LL, Zhong W, Du QG, Ge JB (2009) Biomaterials 30:2276CrossRefGoogle Scholar
  63. 63.
    Khorana AA, Sahni A, Altland OD, Francis CW (2003) Arterioscler Thromb Vasc Biol 23:2110CrossRefGoogle Scholar
  64. 64.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Science 276:1345CrossRefGoogle Scholar
  65. 65.
    Magnani A, Priamo A, Pasqui D, Barbucci R (2003) Mater Sci Eng C 23:315CrossRefGoogle Scholar
  66. 66.
    Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) Acta Biomater 6:3824CrossRefGoogle Scholar
  67. 67.
    Loesberg WA, te RJ, van Delft FC, Schon P, Figdor CG, Speller S, van Loon JJ, Walboomers XF, Jansen JA (2007) Biomaterials 28:3944CrossRefGoogle Scholar
  68. 68.
    Andersson AS, Olsson P, Lidberg U, Sutherland D (2003) Exp Cell Res 288:177CrossRefGoogle Scholar
  69. 69.
    Biela SA, Su Y, Spatz JP, Kemkemer R (2009) Acta Biomater 5:2460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Materials Technology of Education Ministry, Key Laboratory of Artificial Organ Surface Engineering of Sichuan, School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations