Journal of Materials Science

, Volume 46, Issue 21, pp 6767–6771 | Cite as

Switching memory cells constructed on plastic substrates with silver selenide nanoparticles

  • Jin Hyung Jun
  • Kyoungah Cho
  • Junggwon Yun
  • Sangsig Kim


Programmable metallization cell (PMC) memory is a kind of next generation non-volatile memory that has attracted increasing attention in recent years as a possible replacement for flash memory. In spite of the considerable amount of research focused on the fabrication of non-volatile memories on plastic substrates with lightweight, thin, and bendable characteristics, there have been few studies on the fabrication of PCM memory on flexible substrates. In this study, we synthesized Ag2Se nanoparticles (NPs) by a positive-microemulsion method and constructed PMC memories on plastic substrates with programmable layers formed by the spin-coating of the Ag2Se NPs. To the best of the knowledge, this is the first attempt to construct PMC memory on plastic substrates by the spin-coating of Ag2Se NPs. The Ag2Se NPs synthesized in this study had a uniform size of 2 nm and interestingly showed α-phase (high temperature phase) stability at room temperature. Switching behaviors were observed through the voltage scanning on the fabricated memories with applicable switching voltages. However, the resistance ratios of the off-state to the on-state were quite small. The possible reasons for the α-phase stability of the Ag2Se NPs at room temperature and the detailed memory characteristics will be described in this article.


Phase Change Material Switching Behavior Plastic Substrate Switching Memory Ag2Se 



This study was supported by Future-based Technology Development Program (Nano Fields) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0019197), World Class University (WCU, R32-2008-000-10082-0), IT R&D program of MKE/KEIT (10030559, Development of next generation high performance organic/nano materials and printing process technology), Seoul R&BD Program (PA090914), and Hynix-Korea University Nano-Semiconductor Program.


  1. 1.
    Bernede J-C (1980) Phys Stat Sol a 57:K101CrossRefGoogle Scholar
  2. 2.
    Kozicki MN, Park M, Mitkova M (2005) IEEE Trans Nanotechnol 4:331CrossRefGoogle Scholar
  3. 3.
    Banno N, Sakamoto T, Hasegawa T, Terabe K, Aono M (2006) Jpn J Appl Phys 45:3666CrossRefGoogle Scholar
  4. 4.
    Choi H, Nam K-H, Koo Y-W, Chung H-B (2009) J Electroceram 23:322CrossRefGoogle Scholar
  5. 5.
    Tamura T, Hasegawa T, Terabe K, Nakayama T, Sakamoto T, Sunamura H, Kawaure H, Hosaka S, Aono M (2007) J Phys Conf Ser 61:1157CrossRefGoogle Scholar
  6. 6.
    Bernede J-C, Conan A, Fouesnant E, Bouchairi B, Goureaux G (1982) Thin Solid Films 97:165CrossRefGoogle Scholar
  7. 7.
    Wang H, Qi L (2008) Adv Funct Mater 18:1249CrossRefGoogle Scholar
  8. 8.
    Dalven R, Gill R (1967) Phys Rev 159:645CrossRefGoogle Scholar
  9. 9.
    Boolchand P, Bresser WJ (2001) Nature 410:1070CrossRefGoogle Scholar
  10. 10.
    Abdullayev AG, Shafizade RB, Krupnikov ES, Kiriluk KV (1983) Thin Solid Films 106:175CrossRefGoogle Scholar
  11. 11.
    An BH, Ji HM, Wu J-H, Cho MK, Yang K-Y, Lee H, Kim YK (2009) Curr Appl Phys 9:1338CrossRefGoogle Scholar
  12. 12.
    Schoen DT, Xie C, Cui Y (2007) J Am Chem Soc 129:4116CrossRefGoogle Scholar
  13. 13.
    Damodara V, Karunakaran D (1990) J Appl Phys 68:2105CrossRefGoogle Scholar
  14. 14.
    Pejova B, Najdoski M, Grozdanov I, Dey SK (2000) Mater Lett 43:269CrossRefGoogle Scholar
  15. 15.
    Jun JH, Park B, Cho K, Kim S (2009) Nanotechnology 20:505201CrossRefGoogle Scholar
  16. 16.
    Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99CrossRefGoogle Scholar
  17. 17.
    Jiang CY, Sun XW, Tan KW, Lo GQ, Kyaw AKK, Kwong DL (2008) Appl Phys Lett 92:143101CrossRefGoogle Scholar
  18. 18.
    Jang J, Cho K, Lee SH, Kim S (2008) Nanotechnology 19:015204CrossRefGoogle Scholar
  19. 19.
    Yang Y, Ouyang J, Ma L, Tseng RJ-H, Chu C-W (2006) Adv Funct Mater 16:1001CrossRefGoogle Scholar
  20. 20.
    Son D-I, Kim J-H, Park D-H, Choi WK, Li F, Ham JH, Kim TW (2008) Nanotechnology 18:055204CrossRefGoogle Scholar
  21. 21.
    Yun J, Cho K, Park B, Park BH, Kim S (2009) J Mater Chem 19:2082CrossRefGoogle Scholar
  22. 22.
    Baliga SR, Thermadam SCP, Kamalanathan D, Allee DR, Kozicki MN (2007) Proc. Non-Volatile Memory Technology Symp. Albuquerque, NM: IEEE p.86-90Google Scholar
  23. 23.
    Ge J-P, Xu S, Liu L-P, Li Y-D (2006) Chem Eur J 12:3672CrossRefGoogle Scholar
  24. 24.
    Ng MT, Boothroyd C, Vittal JJ (2005) Chem Commun 3820Google Scholar
  25. 25.
    Xiao J, Xie Y, Tang R, Luo W (2002) J Mater Chem 12:1148CrossRefGoogle Scholar
  26. 26.
    Jiang Y, Xie B, Wu J, Yuan S, Wu Y, Huang H, Qian Y (2002) J Solid State Chem 167:28CrossRefGoogle Scholar
  27. 27.
    Karakaya I, Thompson WT (1990) Bull Alloy Phase Diagr 11:266CrossRefGoogle Scholar
  28. 28.
    Günter JR, Keusch P (1993) Ultramicroscopy 49:293CrossRefGoogle Scholar
  29. 29.
    Buschmann V, van Tendeloo G, Monnoyer Ph, Nagy JB (1998) Langmuir 14:1528CrossRefGoogle Scholar
  30. 30.
    Symanczyk R, Bruchhaus R, Dittrich R, Kund M (2009) IEEE Electron Device Lett 30:876CrossRefGoogle Scholar
  31. 31.
    Sakamoto T, Kaeriyama S, Mizuno M, Kawaura H, Hasegawa T, Terabe K, Aono M (2008) Electr Eng Jpn 165:68CrossRefGoogle Scholar
  32. 32.
    Hamilton MA, Barnes AC, Howells WS, Fischer HE (2001) J Phys Condens Matter 13:2425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jin Hyung Jun
    • 1
  • Kyoungah Cho
    • 1
  • Junggwon Yun
    • 1
  • Sangsig Kim
    • 1
  1. 1.Department of Electrical EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations