Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6758–6765 | Cite as

Sacrificial functional polystyrene template to prepare chitosan nanocapsules and in vitro drug release properties

  • Weijun Liu
  • Guihua Chen
  • Guanghong He
  • Zhicai He
  • Zhang Qian
Article

Abstract

In this study, biocompatible and biodegradable chitosan (CS) nanocapsules are successfully prepared in abundant and easily using carboxyl-functionalized polystyrene (PS) as sacrificial template and cross-linked CS with glutaraldehyde as the shell. First, the monodisperse functionalized PS templates be about 200 nm are made by emulsifier-free emulsion polymerization. Second, nanocapsules are accomplished by fabricating on the basis of chemical cross-linking on the surface of the PS template and removing the core via tetrahydrofuran. The templates and nanocapsules were characterized by FT–IR, 1H NMR, FESEM, and TEM. All the results confirmed that the nanocapsules are accomplished via this method. By dissolution of ibuprofen in the chloroform droplets when prepare the carboxyl-functionalized PS, drug-loaded nanocapsules are also fabricated. It is found that the loaded drug can be released again in a sustained manner for up to 80 h. The nanocapsules walls have a prominent effect in slowing down the drug release rate.

Keywords

Chitosan Drug Release Ibuprofen Hollow Microsphere Ibuprofen Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We greatly appreciate the help from Central Laboratory of Analysis and Structure Research in University of Science and Technology of China (USTC). This study is financially supported the National Science Foundation for Post-doctoral Scientists of China (no. 20100471000).

References

  1. 1.
    Du J, Chen Y, Han C, Schmidt M (2003) J Am Chem Soc 125:14710CrossRefGoogle Scholar
  2. 2.
    Clark CG, Wooley KL (2001) In: Tomalia DA (ed) Dendrimers and other dendritic polymers. Wiley, New York, p 166Google Scholar
  3. 3.
    Liggins RT, Burt HM (2002) Adv Drug Deliv Rev 54:191CrossRefGoogle Scholar
  4. 4.
    Peyratout CS, Dahne L (2004) Angew Chem Int Ed 43:3762CrossRefGoogle Scholar
  5. 5.
    Sukhorukov GB, Rogach AL, Zebli B, Liedl T, Skirtach AG, Winterhalter M, Parak WJ (2005) Small 1:194CrossRefGoogle Scholar
  6. 6.
    Yow HN, Routh AF (2006) Soft Matter 2:940CrossRefGoogle Scholar
  7. 7.
    Bédard MF, De Geest BG, Skirtach AG, Möhwald H, Sukhorukov GB (2010) Adv Colloid Interface Sci 158:2CrossRefGoogle Scholar
  8. 8.
    Li XD, Lu T, Zhang JX, Xu JJ, Hu QL, Zhao SF, Shen JC (2009) Acta Biomater 5:2122CrossRefGoogle Scholar
  9. 9.
    Begum S, Jones IP, Jiao C, Lynch DE, Preece JA (2010) J Mater Sci 45:3697. doi: 10.1007/s10853-010-4479-3 CrossRefGoogle Scholar
  10. 10.
    Jagielski N, Sharma S, Hombach V, Mailänder V, Rasche V, Landfester K (2007) Macromol Chem Phys 208:2229CrossRefGoogle Scholar
  11. 11.
    Zhang K, Zheng LL, Zhang XH, Chen X, Yang B (2006) Colloids Surf A 277:145CrossRefGoogle Scholar
  12. 12.
    Liu HX, Gao QX, Ren BY, Liu XX, Tong Z (2009) Int J Pharm 376:92CrossRefGoogle Scholar
  13. 13.
    Wu M, Wang G, Xu H, Feng S, Xu R (2003) Langmuir 19:136Google Scholar
  14. 14.
    Liu SS, Wang CY, Liu XX, Tong Z, Ren BY, Zeng F (2006) Eur Polym J 42:161Google Scholar
  15. 15.
    Ai H, Gao J (2004) J Mater Sci 39:1429. doi: 10.1023/B:JMSC.0000013910.63194.db CrossRefGoogle Scholar
  16. 16.
    Wang JY, Zhang DM, Liu F, Yu XX, Zhao CS, Wan CX (2010) Polym Degrad Stab 95:1205CrossRefGoogle Scholar
  17. 17.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) J Mater Sci 45:5711. doi: 10.1007/s10853-010-4780-1 CrossRefGoogle Scholar
  18. 18.
    Taqieddin E, Amiji M (2004) Biomaterials 25:1937CrossRefGoogle Scholar
  19. 19.
    Bartkowiak A, Hunkeler D (1999) Chem Mater 11:2486CrossRefGoogle Scholar
  20. 20.
    Vazquez E, Dewitt DM, Lynn DM (2002) J Am Chem Soc 124:13992CrossRefGoogle Scholar
  21. 21.
    Zhang YJ, Guan Y, Zhou SQ (2005) Biomacromolecules 6:2365CrossRefGoogle Scholar
  22. 22.
    Peng XH, Zhang L (2005) Langmuir 21:1091CrossRefGoogle Scholar
  23. 23.
    Abraham S, Park YH, Lee JK, Ha CS, Kim I (2008) Adv Mater 20:2177CrossRefGoogle Scholar
  24. 24.
    Zhu ZC, Sukhishvili SA (2009) ACS Nano 3:3595CrossRefGoogle Scholar
  25. 25.
    Hamidi M, Azadi A, Rafiei P (2008) Adv Drug Deliv Rev 60:1638CrossRefGoogle Scholar
  26. 26.
    Ceska GW (1974) J Appl Polym Sci 18:427CrossRefGoogle Scholar
  27. 27.
    Liu SY, Chan CM, Weng LT, Jiang M (2004) Anal Chem 76:5165CrossRefGoogle Scholar
  28. 28.
    Knaul JZ, Creber KAM (1999) J Polym Sci B 37:1079CrossRefGoogle Scholar
  29. 29.
    Furusawa K, Nagayama K (1996) Langmuir 12:2374CrossRefGoogle Scholar
  30. 30.
    Leo E, Forni F, Bernabei MT (2000) Int J Pharm 196:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Weijun Liu
    • 1
  • Guihua Chen
    • 1
  • Guanghong He
    • 1
  • Zhicai He
    • 1
  • Zhang Qian
    • 2
  1. 1.Department of Polymer Science and Engineering, School of Pharmaceutical and Chemical EngineeringTaizhou UniversityLinhaiPeople’s Republic of China
  2. 2.Department of Polymer Science and EngineeringAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations