Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6709–6717 | Cite as

Investigation of LaFeO3 perovskite growth mechanism through mechanical ball milling of lanthanum and iron oxides

  • Monica Sorescu
  • Tianhong Xu
  • Johanna D. Burnett
  • Jennifer A. Aitken
Article

Abstract

LaFeO3 perovskite was synthesized mechanochemically through ball milling of La2O3 and Fe2O3 in stoichiometric ratio. X-ray powder diffraction (XRPD), simultaneous differential scanning calorimetry and thermogravimetry analysis (DSC–TGA), Mössbauer spectroscopy, scanning electron microscopy (SEM), and optical diffuse reflectance spectroscopy were combined for a detailed study of the growth mechanism of LaFeO3 perovskite during the ball milling process. The XRPD results showed that La2O3 is unstable when exposed to air. Both La2O3 and La(OH)3 phases coexist under the ball milling process, indicating that La2O3 or La(OH)3 can be used to produce LaFeO3. The formation of LaFeO3 perovskite was evident after only 2 h of milling and the amount of LaFeO3 gradually increased with the increase of ball milling time. After 12 h of ball milling, single phase LaFeO3 was formed. The Mössbauer spectroscopy studies show that the spectrum of the formed LaFeO3 phase consists of three sextets and one doublet, indicating the wide distribution of LaFeO3 particle sizes and some of the smaller particles having superparamagnetic properties. This is in good agreement with the SEM images, which show that the formed LaFeO3 phase consists of nanometer-sized particles and micrometer-sized agglomerates. The formation of LaFeO3 phase was mainly caused by the La3+ substitution of Fe3+ in Fe2O3 lattice. Optical diffuse reflectance spectroscopy studies show that the formed LaFeO3 phase has semiconductor properties, with the band gap energy ~2.67 eV.

Keywords

Ball Milling La2O3 LaFeO3 Lanthanum Oxide XRPD Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported by the National Science Foundation under grant DMR-0854794.

References

  1. 1.
    Tejuca LG, Fireeo JL, Tascón JMD (1989) Adv Catal 36:237CrossRefGoogle Scholar
  2. 2.
    Yamazoe N, Teraoka Y (1990) Catal Today 8:175CrossRefGoogle Scholar
  3. 3.
    Arakawa T, Kurachi H, Shiokawa J (1985) J Mater Sci 4:1207. doi: 10.1007/BF01026315 CrossRefGoogle Scholar
  4. 4.
    Traversa E, Matsushima S, Okada G, Sadaoka Y, Sakai Y, Watanabe K (1995) Sens Actuators B 25:661CrossRefGoogle Scholar
  5. 5.
    Asamitsu A, Moritomo Y, Tomioka Y, Arima T, Tokura Y (1995) Nature 373:407CrossRefGoogle Scholar
  6. 6.
    Yao T, Ariyoshi A, Inui T (1997) J Am Ceram Soc 80:2441CrossRefGoogle Scholar
  7. 7.
    Kindermann L, Das D, Nickel H, Hilpert K, Appel CC, Poulson FW (1997) J Electrochem Soc 144:717CrossRefGoogle Scholar
  8. 8.
    Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722CrossRefGoogle Scholar
  9. 9.
    Cherry M, Islam MS, Catlow CRA (1995) J Solid State Chem 118:125CrossRefGoogle Scholar
  10. 10.
    Belessi VC, Trikalitis PN, Ladavos AK, Bakas TV, Pomonis PJ (1999) Appl Catal A 177:53CrossRefGoogle Scholar
  11. 11.
    Popa M, Frantti J, Kakihana M (2002) Solid State Ionics 154:437CrossRefGoogle Scholar
  12. 12.
    Popa M, Moreno JMC (2011) J Alloys Compd 509:4108CrossRefGoogle Scholar
  13. 13.
    Kondakindi RR, Kundu A, Karan K, Peppley BA, Qi AD, Thurgood C, Schurer P (2010) Appl Catal A 390:271CrossRefGoogle Scholar
  14. 14.
    Vázquez-Vázquez C, Kögerler P, López-Quintela MA, Sánchez RD, Rivas J (1998) J Mater Res 13:451CrossRefGoogle Scholar
  15. 15.
    Sivakumar M, Gedanken A, Zhong W, Jiang YH, Du YW, Brukental I, Bhattacharya D, Yeshurun Y, Nowik I (2004) J Mater Chem 14:764CrossRefGoogle Scholar
  16. 16.
    Giannakas AE, Ladavos AK, Pomonis PJ (2004) Appl Catal B 49:147CrossRefGoogle Scholar
  17. 17.
    Li KY, Wang DJ, Wu FQ, Xia TF, Li TJ (1999) Mater Chem Phys 60:226CrossRefGoogle Scholar
  18. 18.
    Zhang QW, Saito F (2001) J Mater Sci 36:2287. doi: 10.1023/A:1017520806922 CrossRefGoogle Scholar
  19. 19.
    Cristóbal AA, Botta PM, Bercoff PG, Port López JM (2009) Mater Res Bull 44:1036CrossRefGoogle Scholar
  20. 20.
    Petrović S, Terlecki-Barićević A, Karanović Lj, Kirilov-Stefanov P, Zdujić M, Dondur V, Paneva D, Mitov I, Rakić V (2008) Appl Catal B 79:186CrossRefGoogle Scholar
  21. 21.
    Kaliaguine S, Van Neste A, Szabo V, Gallot JE, Bassir M, Muzychuk R (2001) Appl Catal A 209:345CrossRefGoogle Scholar
  22. 22.
    Nakayama S (2001) J Mater Sci 36:5643. doi: 10.1023/A:1012526018348 CrossRefGoogle Scholar
  23. 23.
    Kubelka P, Munk F (1931) Z Tech Phys 12:593 (trans: Westin S)Google Scholar
  24. 24.
    Li F, Zheng HG, Xia DZ, Xin XQ, Xue ZL (2002) Mater Lett 53:282CrossRefGoogle Scholar
  25. 25.
    Wang YP, Zhu JW, Zhang LL, Yang XJ, Lu LD, Wang X (2006) Mater Lett 60:1767CrossRefGoogle Scholar
  26. 26.
    Khodaei M, Enayati MH, Karimzadeh F (2008) J Mater Sci 43:132. doi: 10.1007/s10853-007-2123-7 CrossRefGoogle Scholar
  27. 27.
    Li X, Cui XH, Liu XW, Jin MZ, Xiao LZ, Zhao MY (1991) Hyperfine Interact 69:851CrossRefGoogle Scholar
  28. 28.
    Berry FJ, Ren XL, Grancedo JR, Marco JF (2004) Hyperfine Interact 156–157:335CrossRefGoogle Scholar
  29. 29.
    Eibschütz M, Shtrikman S, Treves D (1967) Phys Rev 156:562CrossRefGoogle Scholar
  30. 30.
    Tojo T, Zhang QW, Saito F (2008) J Mater Sci 43:2962. doi: 10.1007/s10853-006-1472-y CrossRefGoogle Scholar
  31. 31.
    Morin FJ (1954) Phys Rev 93:1195CrossRefGoogle Scholar
  32. 32.
    Marusak LA, Messier R, White WB (1980) J Phys Chem Solids 41:981CrossRefGoogle Scholar
  33. 33.
    Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc Faraday Trans 79:2027CrossRefGoogle Scholar
  34. 34.
    Robertson J, Peacock PW (2005) Atomic structure, interfaces, and defects of high dielectric constant gate oxides. In: Demkov AA, Navrotsky AA (eds) Materials fundamentals of gate dielectrics. Springer, Netherland, p 183Google Scholar
  35. 35.
    Cheng JB, Li AD, Shao QY, Ling HQ, Wu D, Wang Y, Bao YJ, Wang M, Liu ZG, Ming NB (2004) Appl Surf Sci 233:91CrossRefGoogle Scholar
  36. 36.
    Thimsen E, Biswas S, Lo CS, Biswas P (2009) J Phys Chem C 113:2014CrossRefGoogle Scholar
  37. 37.
    Li SD, Jing LQ, Fu W, Yang LB, Xin BF, Fu HG (2007) Mater Res Bull 42:203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Monica Sorescu
    • 1
  • Tianhong Xu
    • 1
  • Johanna D. Burnett
    • 2
  • Jennifer A. Aitken
    • 2
  1. 1.Department of PhysicsDuquesne UniversityPittsburghUSA
  2. 2.Department of Chemistry and BiochemistryDuquesne UniversityPittsburghUSA

Personalised recommendations