Journal of Materials Science

, Volume 46, Issue 20, pp 6633–6641 | Cite as

Synchrotron X-ray computed microtomography investigation of a mortar affected by alkali–silica reaction: a quantitative characterization of its microstructural features

  • Marco VoltoliniEmail author
  • Nicoletta Marinoni
  • Lucia Mancini


Alkali–silica reaction (ASR) is one of the most important weathering processes in cement-based materials. The damages caused by ASR have been qualitatively investigated with a number of different techniques. In this study, we present a procedure to obtain quantitative morphological parameters of the ASR reaction effects using synchrotron X-ray microtomography data. We found three different kinds of voids due to the effect of three different mechanisms: (i) cracks from ASR expansion, (ii) irregular-shaped voids due to the aggregate particles dissolution, and (iii) bubbles due to the cement paste preparation. We were able to separate them using morphological parameters (such as surface/volume ratio and aspect-ratio) calculated for each object, thus obtaining, e.g., volume fractions for each kind of voids. From the orientation data, we also studied if any shape preferred orientation was present in the sample, concerning the fractures network, and we found no appreciable preferred orientation. The new analysis procedure we applied in this study proved to be an effective approach for the quantitative characterization of the effects (cracks and porosity development by aggregate weathering) of the ASR reaction in mortars.


Orientation Distribution Function Mortar Sample Weathered Sample Shape Prefer Orientation Shape Prefer Orientation 



The authors acknowledge an anonymous reviewer for his comments that helped to improve this manuscript and Prof. P.J. Monteiro for helpful discussion during the preliminary stage of this study.


  1. 1.
    Komlev VS, Mastrogiacomo M, Peyrin F, Cancedda R, Rustichelli F (2009) Tissue Eng C 15:425CrossRefGoogle Scholar
  2. 2.
    Yue S, Lee PD, Poologasundarampillai G, Yao Z, Rockett P, Devlin AH, Mitchell CA, Konerding MA, Jones JR (2010) J Mat Sci Mater Med 21(3):847CrossRefGoogle Scholar
  3. 3.
    Polacci M, Mancini L, Baker DR (2010) J Synchrotron Radiat 17:215CrossRefGoogle Scholar
  4. 4.
    Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger JJ (2006) Appl Phys A 83(2):195CrossRefGoogle Scholar
  5. 5.
    Falcone PM, Baiano A, Zanini F, Mancini L, Tromba G, Dreossi D, Montanari F, Scuor N, Del Nobile MA (2005) Food Sci 70(4):E265CrossRefGoogle Scholar
  6. 6.
    Lassoued N, Babin P, Della Valle G, Devaux M-F, Réguerre A-L (2007) Food Res Int 40(8):1087CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Toda H, Kobayashi M, Suzuki Y, Uesugi K (2010) Mat Sci Forum 654–656:2358CrossRefGoogle Scholar
  8. 8.
    Gallucci E, Scrivener K, Groso A, Stampanoni M, Margaritondo G ((2007)) Cem Concr Res 37(3):360CrossRefGoogle Scholar
  9. 9.
    Promentilla MAB, Sugiyama T, Hitomi T, Takeda N (2008) J Adv Concr Technol 6(2):273CrossRefGoogle Scholar
  10. 10.
    Burlion N, Bernard D, Chen D (2006) Cem Concr Res 36(2):346CrossRefGoogle Scholar
  11. 11.
    Marinoni N, Voltolini M, Mancini L, Vignola P, Pagani A, Pavese A (2009) J Mater Sci 44(21):5815. doi: CrossRefGoogle Scholar
  12. 12.
    Monteiro PJM, Kirchheim AP, Chae S, Fischer P, MacDowell AA, Schaible E, Wenk H-R (2009) Cem Concr Compos 31(8):577CrossRefGoogle Scholar
  13. 13.
    Wigum BJ (2006) In: Proceedings of 8th CANMET/ACI International Conference on Recent Advances in Concrete Technology, Montreal, pp 111–128Google Scholar
  14. 14.
    Swamy RN (1992) The alkali-silica reaction in concrete. Blackie, GlasgowCrossRefGoogle Scholar
  15. 15.
    Stanton TE (1940) ASCE 66:1781Google Scholar
  16. 16.
    Diamond S (1992) Strategic Highway Research Program Report (SHRP-C/UWP-92-601), p 470Google Scholar
  17. 17.
    Ketcham RA (2005) Geosphere 1:32CrossRefGoogle Scholar
  18. 18.
    Brun F, Mancini L, Kasae P, Favretto S, Dreossi D, Tromba G (2010) Nucl Instrum Method A 615(3):326CrossRefGoogle Scholar
  19. 19.
    Sims I, Nixon PE (2000) Mater Struct 33:283CrossRefGoogle Scholar
  20. 20.
    Cloetens P, Barrett R, Baruchel J, Guigay J-P, Schlenker M (1996) J Phys D 29:133CrossRefGoogle Scholar
  21. 21.
    Herman GT (1980) Image reconstruction from projections. Elsevier, New YorkGoogle Scholar
  22. 22.
    Abramoff MD, Magelhaes PJ, Ram SJ (2004) Biophoton Int 11:36Google Scholar
  23. 23.
    Tomasi C, Manduchi R (1998) In: Sixth International Conference on Computer Vision, New Delhi, pp 839–846Google Scholar
  24. 24.
    Voltolini M, Zandomeneghi D, Mancini L, Polacci M (2011) J Volcanol Geotherm Res 202(1–2):83CrossRefGoogle Scholar
  25. 25.
    Hielscher R, Schaeben H (2008) J Appl Cryst 41(6):1024CrossRefGoogle Scholar
  26. 26.
    Ichikawa T, Miura M (2007) Cem Concr Res 37(9):1291CrossRefGoogle Scholar
  27. 27.
    Randle V, Engler O (2000) Introduction to texture analysis. Gordon and Breach, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marco Voltolini
    • 1
    • 3
    • 4
    Email author
  • Nicoletta Marinoni
    • 2
  • Lucia Mancini
    • 1
  1. 1.Sincrotrone Trieste S.C.p.ATriesteItaly
  2. 2.Dipartimento di Scienze della Terra “Ardito Desio”Università degli Studi di MilanoMilanItaly
  3. 3.Dipartimento di GeoscienzeUniversita’ di PadovaPadovaItaly
  4. 4.European Synchrotron Radiation FacilityGrenoble CedexFrance

Personalised recommendations