Advertisement

Journal of Materials Science

, Volume 46, Issue 19, pp 6203–6212 | Cite as

Metastable phase diagrams of Cu-based alloy systems with a miscibility gap in undercooled state

  • Chongde D. CaoEmail author
  • Zhanbo Sun
  • Xiaojun J. Bai
  • Libing B. Duan
  • Jianbang B. Zheng
  • Fang Wang
ABBASCHIAN FESTSCHRIFT

Abstract

Some Cu-based alloy systems with a large positive enthalpy of mixing display a eutectic or peritectic phase diagram under equilibrium conditions, but show a metastable liquid miscibility gap in the undercooled state. When the melt is undercooled below certain temperature beyond the critical liquid-phase separation temperature, it separates into two liquids with different compositions. The compositions of the two liquids change successively upon the metastable phase diagram before solidification occurs. The shape and position of the metastable miscibility gap are dependent of the alloy components and their interaction features. This study reviews the metastable phase diagrams of Cu-based alloy systems, which are derived from experiments and thermodynamic calculations.

Keywords

Electromagnetic Levitation Ternary Alloy System Metastable Phase Diagram Critical Undercooling Measured Liquidus Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Mr. Jing Wang and Mr. Xiang Zeng for their help. This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 50871088 and 50871081), the Natural Science Foundation of Shaanxi, the International Cooperation Program of Shaanxi, and Specialized Research Fund for the Doctoral Program of Higher Education.

References

  1. 1.
    Nakagawa Y (1958) Acta Metall 6:704CrossRefGoogle Scholar
  2. 2.
    Munitz A, Elder SP, Abbaschian R (1992) Metall Trans 23A:1817Google Scholar
  3. 3.
    Munitz A, Abbaschian R (1996) Metall Mater Trans A 27A:4049CrossRefGoogle Scholar
  4. 4.
    Robinson MB, Li D, Rathz TJ, Williams G (1999) J Mater Sci 34:3747. doi: 10.1023/A:1004688313591 CrossRefGoogle Scholar
  5. 5.
    Yamauchi I, Ueno N, Shimaoka M, Ohnaka I (1998) J Mater Sci 33:371. doi: 10.1023/A:1004319829612 CrossRefGoogle Scholar
  6. 6.
    Letzig T, Cao CD, Bender W, Kolbe M, Herlach DM (2000) Mat-wissuwerkstofftechnik 31:825CrossRefGoogle Scholar
  7. 7.
    Cao CD, Herlach DM, Kolbe M, Gorler GP, Wei B (2003) Scr Mater 48:5CrossRefGoogle Scholar
  8. 8.
    Cao CD, Herlach DM, Wei B (2002) J Mater Sci Lett 21:341CrossRefGoogle Scholar
  9. 9.
    Cao CD, Gorler GP, Herlach DM, Wei B (2002) Mater Sci Eng A325:503Google Scholar
  10. 10.
    Palumbo M, Curiotto S, Battezzati L (2006) Calphad 30:171CrossRefGoogle Scholar
  11. 11.
    Curiotto S, Pryds NH, Johnson E, Battezzati L (2007) Mater Sci Eng A449–451:644Google Scholar
  12. 12.
    Curiotto S, Greco RH, Pryds N, Johnson E, Battezzati L (2007) Fluid Phase Equilib 256:132CrossRefGoogle Scholar
  13. 13.
    Zhao JZ, Kolbe M, Li HL, Gao JR, Ratke L (2007) Metall Mater Trans A 38A:1162CrossRefGoogle Scholar
  14. 14.
    Lindqvist PA, Uhrenius B (1980) Calphad 3:193CrossRefGoogle Scholar
  15. 15.
    Chuang YY, Schmid R, Chang YA (1984) Metall Trans A 15:1921CrossRefGoogle Scholar
  16. 16.
    Lu XY, Cao CD, Wei B (2001) Mater Sci Eng A313:198Google Scholar
  17. 17.
    Hasebe M, Nishizawa T (1980) Calphad 4:83CrossRefGoogle Scholar
  18. 18.
    Qkamoto H (1993) Phase diagram of binary iron alloys. ASM International, Materials Park, OH, pp 131–137Google Scholar
  19. 19.
    Wilde G, Willnecker R, Singh RN, Sommer F (1997) Z Metallked 88:804Google Scholar
  20. 20.
    Wilde G, Perepezko JH (1999) Acta Mater 47:3009CrossRefGoogle Scholar
  21. 21.
    Turchanin MA, Agraval PG (2001) Powder Metall Met Ceram 40:7Google Scholar
  22. 22.
    Wang CP, Liu XJ, Ohnuma I, Kainuma R, Lshida K (2002) Science 9:990CrossRefGoogle Scholar
  23. 23.
    Hindrichs G (1908) Z Anorg Chem 59:415CrossRefGoogle Scholar
  24. 24.
    Siedschlag E (1923) Z Anorg Chem 131:173CrossRefGoogle Scholar
  25. 25.
    Leonov M, Bochvar N, Ivanchenko V, Nauk D (1986) Akad SSSR 290:888Google Scholar
  26. 26.
    Müller R (1988) Siemens Forsch u Entwickl Ber 17:105Google Scholar
  27. 27.
    Kuznetsov GM, Fedorov VN, Rodnyanskaya AL (1977) Sov Non-Ferrous Met Res 3:104Google Scholar
  28. 28.
    Chakrabarti DJ, Laughlin DE (1984) Bull Alloy Phase Diagrams 5:59CrossRefGoogle Scholar
  29. 29.
    Zeng K, Hämäläinen M (1995) Calphad 19:93CrossRefGoogle Scholar
  30. 30.
    Jacobs KT, Priya S, Waseda Y (2000) Z Metallkd 91:594Google Scholar
  31. 31.
    Sun ZB, Zhang C, Zhu Y, Yang Z, Ding B, Song X (2003) J Alloys Compd 361:165CrossRefGoogle Scholar
  32. 32.
    Zhou ZM, Wang YP, Gao J, Kolbe M (2005) Mater Sci Eng A398:318Google Scholar
  33. 33.
    Gao J, Wang YP, Zhou ZM, Kolbe M (2007) Mater Sci Eng A449–451:654Google Scholar
  34. 34.
    Zhou ZM, Gao J, Li F, Zhang YK, Wang YP, Kolbe M (2009) J Mater Sci 44:3793. doi: 10.1007/s10853-009-3511-y CrossRefGoogle Scholar
  35. 35.
    Popov IA, Shiryaeva NV (1961) Russ J Inorg Chem 6:1184Google Scholar
  36. 36.
    Allibert C, Driole J, Bonnier E (1969) Acad Sci Paris 268C:1579Google Scholar
  37. 37.
    Smith JF, Lee KJ, Baily DM (1984) Bull Alloy Phase Diagrams 5:1984Google Scholar
  38. 38.
    Chakrabari DJ, Laughlin DE (1982) Bull Alloy Phase Diagrams 2:455CrossRefGoogle Scholar
  39. 39.
    Li D, Robinson MB, Rathz TJ (2000) J Phase Equilib 2:2000Google Scholar
  40. 40.
    Munitz A, Bamberger M, Venkert A, Landau P, Abbaschian R (2009) J Mater Sci 44:64. doi: 10.1007/s10853-008-3115-y CrossRefGoogle Scholar
  41. 41.
    Munitz A, Abbaschian R (1998) J Mater Sci 33:3639. doi: 10.1023/A:1004663530929 CrossRefGoogle Scholar
  42. 42.
    Kim DI, Abbaschian R (2000) J Phase Equilib 21:25CrossRefGoogle Scholar
  43. 43.
    Bamberger M, Munitz A, Kaufman L, Abbaschian R (2002) Calphad 26:375CrossRefGoogle Scholar
  44. 44.
    Wang CP, Liu XJ, Ohnuma I, Kainuma R, Ishida K (2002) J Phase Equilib 23:236CrossRefGoogle Scholar
  45. 45.
    Cao CD, Görler GP (2005) Chin Phys Lett 22:482CrossRefGoogle Scholar
  46. 46.
    Munitz A, Bamberger AM, Wannaparhun S, Abbaschian R (2006) J Mater Sci 41:2749. doi: 10.1007/s10853-006-5598-8 CrossRefGoogle Scholar
  47. 47.
    Curiotto S, Battezzati L, Johnson E, Palumbo M, Pryds N (2008) J Mater Sci 43:3253. doi: 10.1007/s10853-008-2540-2 CrossRefGoogle Scholar
  48. 48.
    Sun ZB, Song X, Hu Z, Yang S, Liang G, Cochrane R (2001) J Alloys Compd 319:276CrossRefGoogle Scholar
  49. 49.
    Curiotto S, Battezzati L, Johnson E, Pryds N (2007) Acta Mater 55:6642CrossRefGoogle Scholar
  50. 50.
    Sun ZB, Guo J, Li Y, Zhu YM, Li Q, Song XP (2008) Metall Mater Trans A 39A:1054CrossRefGoogle Scholar
  51. 51.
    Sun ZB, Guo J, Song XP, Zhu YM, Li Y (2008) J Alloys Compd 455:243CrossRefGoogle Scholar
  52. 52.
    Jellinghaus W (1936) Archiv fur das Eisenhuettenwesen 10:115Google Scholar
  53. 53.
    Maddocks WR, Claussen GE (1936) Iron and Steel Institute, London, Special Report 14:116Google Scholar
  54. 54.
    Oikawa K (1981) Thesis of Master of Engineering. Tohoku University, JapanGoogle Scholar
  55. 55.
    Jiang M, Hao SM (1990) In: Proceedings of the 6th national symposium on phase diagram, p 150Google Scholar
  56. 56.
    Ohtani H, Suda H, Ishida K (1997) ISIJ Int 37:207CrossRefGoogle Scholar
  57. 57.
    Waehlert M, Oster Z (1914) Berg Huttenwesen 62:357Google Scholar
  58. 58.
    Dannohl V, Neumann H (1938) Z Metallkd 30:217Google Scholar
  59. 59.
    Hasebe M, Oikawa K, Nishizawa T (1982) J Jpn Inst Met 46:584Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chongde D. Cao
    • 1
    Email author
  • Zhanbo Sun
    • 2
  • Xiaojun J. Bai
    • 1
  • Libing B. Duan
    • 1
  • Jianbang B. Zheng
    • 1
  • Fang Wang
    • 3
  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of ScienceXi’an Jiaotong UniversityXi’anChina
  3. 3.School of Computer Science and TechnologyNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations