Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6618–6626 | Cite as

Aminofunctional silane layers for improved copper–polymer interface adhesion

  • Mari HonkanenEmail author
  • Maija Hoikkanen
  • Minnamari Vippola
  • Jyrki Vuorinen
  • Toivo Lepistö
Article

Abstract

The aim of this study was to characterize two different copper grades, oxygen-free copper, and phosphorous deoxidized copper, with aminofunctional silane layers on them and to study these silane layers as coupling agents in the injection-molded thermoplastic urethane–copper hybrids. The copper surfaces were as-received and modified, i.e., polished and oxidized. The copper surfaces and silane layers which were grown from solution concentrations of 0.25 and 0.5 vol% were studied with reflection absorption infrared spectroscopy (RAIRS), atomic force microscope (AFM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The adhesive strengths of the copper–polymer joints were measured with peel tests and peeled surfaces were further studied with RAIRS, AFM, and FESEM. On the as-received copper surface, the silane layer was irregular and existed mainly in the surface roughness sites. This was the reason why hybrids manufactured with the as-received copper failed mostly in the silane layer. Hybrids manufactured with the oxidized copper sheets had a uniform silane layer and the hybrids failed mostly cohesively in thermoplastic urethane and had excellent peel strength values. In all silane-treated copper samples, Si–O–Si groups were formed confirming the cross-linking in the silane layer.

Keywords

Field Emission Scanning Electron Microscope Cu2O Silane Layer Copper Surface Peel Test 

Notes

Acknowledgements

The authors thank Graduate School of Processing of Polymers and Polymer-based Multimaterials, Finnish Funding Agency for Technology and Innovation, and Finnish industry for financial support.

References

  1. 1.
    Yun H, Cho K, An J, Park C (1992) J Mater Sci 27:5811. doi: https://doi.org/10.1007/BF01119743 CrossRefGoogle Scholar
  2. 2.
    Ogawa T, Nobuta J (2010) J Mater Sci 45:771. doi: https://doi.org/10.1007/s10853-009-3999-1 CrossRefGoogle Scholar
  3. 3.
    Plueddemann E (1982) Silane coupling agents. Plenum Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Van Schaftinghen T, Le Pen C, Terryn H, Hörzenberger F (2004) Electrochim Acta 49:2997CrossRefGoogle Scholar
  5. 5.
    Petrie E (2007) Handbook of adhesives and sealants. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Boerio F, Williams J, Burkstrand J (1983) J Colloid Interface Sci 91:485CrossRefGoogle Scholar
  7. 7.
    Hoikkanen M, Honkanen M, Vippola M, Lepistö T, Vuorinen J (2011) Prog Org Coat (submitted)Google Scholar
  8. 8.
    Wetherhold R, Pisanova E, Alarifi H (2010) J Adhes Sci Technol 24:1221CrossRefGoogle Scholar
  9. 9.
    Gu X, Xue G, Jiang B (1997) Appl Surf Sci 115:66CrossRefGoogle Scholar
  10. 10.
    Yuan W, Van Ooij W (1997) J Colloid Interface Sci 185:197CrossRefGoogle Scholar
  11. 11.
    Honkanen M, Hoikkanen M, Vippola M, Vuorinen J, Lepistö T, Jussila P, Ali-Löytty H, Valden M (2011) Appl Surf Sci (submitted)Google Scholar
  12. 12.
    Deflorian F, Rossi S, Fedrizzi L (2006) Electrochim Acta 51:6097CrossRefGoogle Scholar
  13. 13.
    Deflorian F, Rossi S, Fedrizzi L, Fedel M (2008) Prog Org Coat 63:338CrossRefGoogle Scholar
  14. 14.
    Yang J, Kolasa B, Gibson J, Yeadon M (1998) Appl Phys Lett 73:2841CrossRefGoogle Scholar
  15. 15.
    Lampimäki M, Lahtonen K, Hirsimäki M, Valden M (2007) J Chem Phys 126:034703CrossRefGoogle Scholar
  16. 16.
    Lahtonen K (2008) PhD thesis, Tampere University of TechnologyGoogle Scholar
  17. 17.
    Ghosh S, Avasthi D, Shah P, Ganesan V, Gupta A, Sarangi D, Bhattacharya R, Assmann W (2000) Vacuum 57:377CrossRefGoogle Scholar
  18. 18.
    Suzuki S, Ishikawa Y, Isshiki M, Waseda Y (1997) Mater Trans JIM 38:1004CrossRefGoogle Scholar
  19. 19.
    Lim J-W, Iijima J, Zhu Y, Ho Yoo J, Choi G-S, Mimura K, Isshiki M (2008) Thin Solid Films 516:4040CrossRefGoogle Scholar
  20. 20.
    https://doi.org/www.luvata.com. Accessed 2 March 2011
  21. 21.
    Honkanen M, Vippola M, Lepistö T (2007) J Mater Sci 42:4684. doi: https://doi.org/10.1007/s10853-006-0351-x CrossRefGoogle Scholar
  22. 22.
    Honkanen M, Vippola M, Lepistö T (2008) J Mater Res 23:1350CrossRefGoogle Scholar
  23. 23.
    Honkanen M, Hoikkanen M, Vippola M, Vuorinen J, Lepistö T (2009) J Adhes Sci Technol 23:1747CrossRefGoogle Scholar
  24. 24.
    Honkanen M, Hoikkanen M, Vippola M, Vuorinen J, Lepistö T (2010) In: Proceedings of 61st Annual Meeting of the Scandinavian Society for Electron MicroscopyGoogle Scholar
  25. 25.
    Lefez B, Souchet R, Kartouni K, Lenglet M (1995) Thin Solid Films 268:45CrossRefGoogle Scholar
  26. 26.
    Boerio F, Shah P (2005) J Adhes 81:645CrossRefGoogle Scholar
  27. 27.
    Chiang C-H, Koenig J (1981) J Colloid Interface Sci 83:361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mari Honkanen
    • 1
    Email author
  • Maija Hoikkanen
    • 2
  • Minnamari Vippola
    • 1
  • Jyrki Vuorinen
    • 2
  • Toivo Lepistö
    • 1
  1. 1.Laboratory of Materials Characterization, Department of Materials ScienceTampere University of TechnologyTampereFinland
  2. 2.Laboratory of Plastic and Elastomer Technology, Department of Materials ScienceTampere University of TechnologyTampereFinland

Personalised recommendations