Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6603–6608 | Cite as

Novel insight into microstructural evolution of phase-separated Cu–Co alloys under influence of forced convection

  • Y. K. Zhang
  • J. GaoEmail author
  • L. L. Wei
  • M. Kolbe
  • T. Volkmann
  • D. Herlach
Article

Abstract

Cu–Co alloys of bulk compositions Cu75Co25 and Cu84Co16 were undercooled and solidified using electromagnetic levitation. Microstructure of the samples was characterized using optical microscopy, scanning electron microscopy, energy dispersive spectrometry, and micro X-ray diffraction analysis. It was found that besides a bimodal size distribution, droplets of the Co-rich L1 phase resulting from liquid phase separation have a broad composition distribution. The bimodal size distribution of the droplets is more pronounced for the Cu75Co25 sample than for the Cu84Co16 sample, whilst the composition distribution of the droplets is broader in the Cu75Co25 sample than in the Cu84Co16 sample. The droplets were found to also have different types of substructures in the two samples. The results provide novel insight into microstructural evolution of phase-separated alloys under influence of forced convection.

Keywords

Forced Convection Primary Peak Liquid Phase Separation Bimodal Size Distribution Co75Co25 Sample 

Notes

Acknowledgements

This work is financially supported by the Fundamental Research Funds for the Central Universities under grant Nos. N090109001 and N100309001. Part of work is supported by the Deutsche Forschungsgemeinschaft within grant HE1601/22-1.

References

  1. 1.
    Nakagawa Y (1958) Acta Metall 6:704CrossRefGoogle Scholar
  2. 2.
    Ratke L, Diefenbach S (1995) Mater Sci Eng Rep 15:263CrossRefGoogle Scholar
  3. 3.
    Elder SP, Munitz A, Abbaschian GJ (1989) Mater Sci Forum 50:137CrossRefGoogle Scholar
  4. 4.
    Munitz A, Abbaschian R (1991) J Mater Sci 26:6458. doi: https://doi.org/10.1007/BF00551897 CrossRefGoogle Scholar
  5. 5.
    Munitz A, Elder-Randall SP, Abbaschian R (1992) Metall Trans A 23:1817CrossRefGoogle Scholar
  6. 6.
    Munitz A, Abbaschian R (1996) Metall Mater Trans A 27:4049CrossRefGoogle Scholar
  7. 7.
    Song X, Mahon SW, Cochrane RF, Hickey BJ (1997) Mater Lett 31:261CrossRefGoogle Scholar
  8. 8.
    Li D, Robinson MB, Rathz TJ, Williams G (1998) Mater Lett 36:152CrossRefGoogle Scholar
  9. 9.
    Yamauchi I, Ueno N, Shimaoka M, Ohnaka I (1998) J Mater Sci 33:371. doi: https://doi.org/10.1023/A:1004319829612 CrossRefGoogle Scholar
  10. 10.
    Munitz A, Abbaschian R (1998) J Mater Sci 33:3639. doi: https://doi.org/10.1023/A:1004663530929 CrossRefGoogle Scholar
  11. 11.
    Robinson MB, Li D, Rathz TJ, Williams G (1999) J Mater Sci 34:3747. doi: https://doi.org/10.1023/A:1004688313591 CrossRefGoogle Scholar
  12. 12.
    Cao CD, Letzig T, Görler GP, Herlach DM (2001) J Alloys Compd 325:113CrossRefGoogle Scholar
  13. 13.
    Sun Z, Song X, Hu Z, Yang S, Liang G, Sun J (2001) J Alloys Compd 319:266CrossRefGoogle Scholar
  14. 14.
    Cao CD, Görler GP, Herlach DM, Wei B (2002) Mater Sci Eng A 325:503CrossRefGoogle Scholar
  15. 15.
    Cao B, Wei DM, Herlach J (2002) Mater Sci Lett 21:341CrossRefGoogle Scholar
  16. 16.
    Cao CD, Herlach DM, Kolbe M, Görler GP, Wei B (2003) Scr Mater 48:5CrossRefGoogle Scholar
  17. 17.
    Lu XY, Cao CD, Kolbe M, Wei B, Herlach DM (2004) Mater Sci Eng A 375–377:1101CrossRefGoogle Scholar
  18. 18.
    Palumbo M, Curiotto S, Battezzati L (2006) Calphad 30:171CrossRefGoogle Scholar
  19. 19.
    Curiotto S, Pryds NH, Johnson E, Battezzati L (2006) Metall Mater Trans A 37:2361CrossRefGoogle Scholar
  20. 20.
    Battezzati L, Curiotto S, Johnson E, Pryds NH (2007) Mater Sci Eng A 449–451:7CrossRefGoogle Scholar
  21. 21.
    Curiotto S, Pryds NH, Johnson E, Battezzati L (2007) Mater Sci Eng A 449–451:644CrossRefGoogle Scholar
  22. 22.
    Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S, Kishio K (2004) J Cryst Growth 260:475CrossRefGoogle Scholar
  23. 23.
    Kolbe M, Gao JR (2005) Mater Sci Eng A 413–414:509CrossRefGoogle Scholar
  24. 24.
    Zhang YK, Gao J, Nagamatsu D, Fukuda T, Yasuda H, Kolbe M, He JC (2008) Scr Mater 59:1002CrossRefGoogle Scholar
  25. 25.
    Gao J, Zhang YK, Fukuda T, Yasuda H, Kolbe M, He JC (2009) J Phys Conf Ser 144:012117CrossRefGoogle Scholar
  26. 26.
    Antion C, Chatain D (2007) Surf Sci 601:2232CrossRefGoogle Scholar
  27. 27.
    Dong C, Wei B, Leonhardt M, Lindenkreuz HG, Löser W (1998) Inter J Non Equil Process 10:241Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Y. K. Zhang
    • 1
    • 2
  • J. Gao
    • 1
    Email author
  • L. L. Wei
    • 1
  • M. Kolbe
    • 2
  • T. Volkmann
    • 2
  • D. Herlach
    • 2
  1. 1.Key Laboratory of Electromagnetic Processing of Materials, Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany

Personalised recommendations