Journal of Materials Science

, Volume 46, Issue 18, pp 6148–6153 | Cite as

Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites

  • Y. DongEmail author
  • D. Chaudhary
  • H. Haroosh
  • T. Bickford


A novel material formulation method of polylactic acid /tubular clay nanocomposites via electrospinning was introduced and the important processing parameters such as solution concentration, clay loading, material feed rate were particularly investigated. The hybrid fibre diameter, the clay dispersability and the thermal properties of such nanocomposites were then characterised by using the scanning electron microscopy, wide-angle X-ray diffraction and differential scanning calorimetry, respectively, to establish a fundamental structure–property relationship for the future application.


Clay Feed Rate Polylactic Acid Clay Content Electrospun Fibre 



The authors would like to thank the financial supports from both Curtin Internal Research Grants (IRG) 2010 (Project no.: 47604) and New Staff Academic Development Fund to Dr. Y. Dong. The technical assistance of XRD analysis from Prof. De Yu Li, Centre for Materials Research (CMR), Curtin University of Technology is also acknowledged.


  1. 1.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223CrossRefGoogle Scholar
  2. 2.
    Agarwal S, Wendorff JH, Greiner A (2008) Polymer 49:5603CrossRefGoogle Scholar
  3. 3.
    Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnology 16:208CrossRefGoogle Scholar
  4. 4.
    Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Clay Miner 40:383CrossRefGoogle Scholar
  5. 5.
    Harvey CC, Murray HH (1990) Clay Miner Soc Spec Pub 1:233Google Scholar
  6. 6.
    Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A (2009) Polym-Plast Technol Eng 48:313CrossRefGoogle Scholar
  7. 7.
    Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu Bakar A (2008) Polym Test 27:841CrossRefGoogle Scholar
  8. 8.
    Deng S, Zhang J, Ye L (2009) Compos Sci Technol 69:2497CrossRefGoogle Scholar
  9. 9.
    Marney DCO, Russell LJ, Wu DY, Nguyen T, Crammb D, Rigopoulos N, Wright N, Greaves M (2008) Polym Degrad Stabil 93:1971CrossRefGoogle Scholar
  10. 10.
    Liu M, Guo B, Zou Q, Du M, Jia D (2008) Nanotechnology 19:205709CrossRefGoogle Scholar
  11. 11.
    Touny AH, Lawrence JG, Jones AD, Bhaduri SB (2010) J Mater Res 25:857CrossRefGoogle Scholar
  12. 12.
    Matthew AP, Oksman K, Sain M (2006) J Appl Polym Sci 101:300CrossRefGoogle Scholar
  13. 13.
    Fischer EW, Sterzel HJ, Wegner G, Kolloid ZZ (1973) Polymer 251:980CrossRefGoogle Scholar
  14. 14.
    Levis SR, Deasy PB (2002) Int J Pharm 243:125CrossRefGoogle Scholar
  15. 15.
    Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C (2008) Acta Biomater 4:756CrossRefGoogle Scholar
  16. 16.
    Lee JH, Park TG, Park SH, Lee DS, Lee YK, Yoon SC, Nam JD (2003) Biomaterial 24:2773CrossRefGoogle Scholar
  17. 17.
    Chow WS, Lok SK (2009) J Therm Anal Calorim 95:627CrossRefGoogle Scholar
  18. 18.
    Di Y, Iannace S, Maio ED, Nicolais L (2005) J Polym Sci Pt B Polym Phys 43:689CrossRefGoogle Scholar
  19. 19.
    Chaudhary DS, Jollands MC, Cser F (2004) Polym Polym Compos 12:383Google Scholar
  20. 20.
    Ning N, Yin Q, Luo F, Zhang Q, Du R, Fu Q (2007) Polymer 48:7374CrossRefGoogle Scholar
  21. 21.
    Du M, Guo B, Jia D (2006) Eur Polym J 42:1362CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Y. Dong
    • 1
    Email author
  • D. Chaudhary
    • 2
  • H. Haroosh
    • 2
  • T. Bickford
    • 1
  1. 1.Department of Mechanical EngineeringCurtin University of TechnologyPerthAustralia
  2. 2.Department of Chemical EngineeringCurtin University of TechnologyPerthAustralia

Personalised recommendations