Journal of Materials Science

, Volume 46, Issue 20, pp 6571–6580 | Cite as

Enhancement of the thermal conductivity of aluminum oxide–epoxy terminated poly(dimethyl siloxane) with a metal oxide containing polysiloxane

  • Hyungu Im
  • Jooheon KimEmail author


Aluminum oxide containing poly(dimethyl-methylvinyl)siloxane (PMDMS:Al2O3) was synthesized and blended with epoxy-terminated dimethylsiloxane (ETDS) to fabricate a thermally conducting composite. PMDMS:Al2O3 was added to provide interfacial interactions between the Al2O3 and polymer matrix. The PMDMS:Al2O3 containing composites revealed more enhanced thermal conduction properties because of the strengthened interfacial bonding at a fixed filler concentration. The conductivity as a function of the filler concentration was correlated with Agari’s models. Based on the coefficient obtained from Agari’s model, PMDMS:Al2O3 affected the formation of the conducting path in the composite. The results indicated that the presence of PMDMS:Al2O3 would help to establish a conducting path compared to compounds without it. All composites showed a decrease in thermal conductivity with increasing operating temperature. As expected, the PMDMS:Al2O3 containing composite (P-ETDS/Al2O3) showed more enhanced thermal conductivity than those without, regardless of the operating temperature.


Al2O3 PDMS Polysiloxane DMAA Conducting Path 



This study (Grant No. 000440680110) was supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2010.


  1. 1.
    Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) J Phys Chem C 111:7565CrossRefGoogle Scholar
  2. 2.
    Lin W, Moon KS, Wong CP (2009) Adv Mater 21:2421CrossRefGoogle Scholar
  3. 3.
    Mamunya Y, Boundenne A, Lebovka N, Candau Y, Lisunova M (2008) Compos Sci Technol 68:1981CrossRefGoogle Scholar
  4. 4.
    Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermochim Acta 430:155CrossRefGoogle Scholar
  5. 5.
    Xu Y, Luo X, Chung DDL (2002) J Electron Packag 124:188CrossRefGoogle Scholar
  6. 6.
    Wolff EG, Shneider DA (1998) Int J Heat Mass Transf 41:3469CrossRefGoogle Scholar
  7. 7.
    Yung KC, Wang J, Yue TM (2008) J Compos Mater 42:2615CrossRefGoogle Scholar
  8. 8.
    Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Compos Part A Appl Sci Manuf 37:727CrossRefGoogle Scholar
  9. 9.
    Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z (2009) Appl Phys Lett 95:224104CrossRefGoogle Scholar
  10. 10.
    Li TL, Hsu SLC (2010) J Phys Chem B 114:6825CrossRefGoogle Scholar
  11. 11.
    Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2009) Adv Funct Mat 19:1857CrossRefGoogle Scholar
  12. 12.
    Yang F, Zhao X, Xiao P (2010) J Eur Ceram Soc 30:3111CrossRefGoogle Scholar
  13. 13.
    Lee B, Dai G (2009) J Mater Sci 44:4848. doi: CrossRefGoogle Scholar
  14. 14.
    Lee ES, Lee SM, Shanefield DJ, Cannon WR (2008) J Am Ceram Soc 91:1169CrossRefGoogle Scholar
  15. 15.
    Watari K, Ishizaki K, Tsuchiya F (1993) J Mater Sci 28:3709. doi: CrossRefGoogle Scholar
  16. 16.
    Hirano M, Yamauchi N (1993) J Mater Sci 28:5737. doi: CrossRefGoogle Scholar
  17. 17.
    Zhou W (2011) J Mater Sci 46:3883. doi: CrossRefGoogle Scholar
  18. 18.
    Guthy C, Du F, Brand S, Winey KI, Fischer JE (2007) J Heat Transf 129:1096CrossRefGoogle Scholar
  19. 19.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767CrossRefGoogle Scholar
  20. 20.
    Liu CH, Huang H, Wu Y, Fan SS (2004) Appl Phys Lett 84:4248CrossRefGoogle Scholar
  21. 21.
    Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Appl Phys Lett 87:161909CrossRefGoogle Scholar
  22. 22.
    Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Appl Phys Lett 89:133102CrossRefGoogle Scholar
  23. 23.
    Lee HH, Chou KS, Shih ZW (2005) Int J Adhes Adhes 25:437CrossRefGoogle Scholar
  24. 24.
    Gwinn JP, Webb RL (2003) Microelectron J 34:215CrossRefGoogle Scholar
  25. 25.
    Hong J, Lee J, Hong CK, Shim SE (2010) Curr Appl Phys 10:359CrossRefGoogle Scholar
  26. 26.
    Wang Q, Gao W, Xie Z (2003) J Appl Polym Sci 89:2397CrossRefGoogle Scholar
  27. 27.
    Zhou W, Qi S, Tu C, Zhao H (2007) J Appl Polym Sci 104:2478CrossRefGoogle Scholar
  28. 28.
    Kim H, Kim J, Kim J (2010) Microelectron Reliab 50:258CrossRefGoogle Scholar
  29. 29.
    Im H, Kim J (2010) Polym Compos 31:1669CrossRefGoogle Scholar
  30. 30.
    McGrath JE, Riffle JS, Banthia AK, Yilgor L, Wilkes GL (1983) An overview of the polymerization of cyclosiloxanes, initiation and polymerization. In: ACS Symposium Series No. 212, Chapter 2, WashingtonGoogle Scholar
  31. 31.
    Kang DH, Lee BC (2004) Polymer (Korea) 28:143Google Scholar
  32. 32.
    Carson JK, Noureldin M (2009) Int Commun Heat Mass 36:458CrossRefGoogle Scholar
  33. 33.
    Gustafsson SE, Karawacki E, Khan MN (1979) J Phys D Appl Phys 12:1411CrossRefGoogle Scholar
  34. 34.
    Barrie JA, Munday K (1983) J Membr Sci 13:175CrossRefGoogle Scholar
  35. 35.
    Bajaj P, Varshney SK (1981) Polymer 22:372CrossRefGoogle Scholar
  36. 36.
    Horiuchi H, Irie S, Nose T (1991) Polymer 32:1970CrossRefGoogle Scholar
  37. 37.
    Hashin Z, Shtrikman S (1962) J Appl Phys 33:3125CrossRefGoogle Scholar
  38. 38.
    Sushumna I, Gupta RK, Ruckenstein E (1991) J Mater Res 6:1082CrossRefGoogle Scholar
  39. 39.
    Meredith RE, Tobias CW (1962) Advances in electrochemistry and electrochemical engineering, vol 2. Wiley, New YorkGoogle Scholar
  40. 40.
    Brruggeman DAG (1935) Ann Phys 416:636CrossRefGoogle Scholar
  41. 41.
    Meredith RE, Tobias CW (1961) J Electrochem Soc 108:286CrossRefGoogle Scholar
  42. 42.
    Ramajo L, Reboredo M, Santiago D, Castro M (2008) J Compos Mater 42:2027CrossRefGoogle Scholar
  43. 43.
    Agari Y, Uno T (1985) J Appl Polym Sci 30:2225CrossRefGoogle Scholar
  44. 44.
    Scarisbrick RM (1973) J Phys D Appl Phys 6:2098CrossRefGoogle Scholar
  45. 45.
    Markov AV (2008) Polym Sci Ser A 5:709Google Scholar
  46. 46.
    Agari Y, Tanaka M, Nagai S, Uno T (1987) J Appl Polym Sci 34:1429CrossRefGoogle Scholar
  47. 47.
    Cecen V, Tavman IH, Kok M, Aydogdu Y (2009) Polym Compos 30:1229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Chemical Engineering & Material ScienceChung-Ang UniversitySeoulKorea

Personalised recommendations