Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6571–6580 | Cite as

Enhancement of the thermal conductivity of aluminum oxide–epoxy terminated poly(dimethyl siloxane) with a metal oxide containing polysiloxane

  • Hyungu Im
  • Jooheon KimEmail author
Article

Abstract

Aluminum oxide containing poly(dimethyl-methylvinyl)siloxane (PMDMS:Al2O3) was synthesized and blended with epoxy-terminated dimethylsiloxane (ETDS) to fabricate a thermally conducting composite. PMDMS:Al2O3 was added to provide interfacial interactions between the Al2O3 and polymer matrix. The PMDMS:Al2O3 containing composites revealed more enhanced thermal conduction properties because of the strengthened interfacial bonding at a fixed filler concentration. The conductivity as a function of the filler concentration was correlated with Agari’s models. Based on the coefficient obtained from Agari’s model, PMDMS:Al2O3 affected the formation of the conducting path in the composite. The results indicated that the presence of PMDMS:Al2O3 would help to establish a conducting path compared to compounds without it. All composites showed a decrease in thermal conductivity with increasing operating temperature. As expected, the PMDMS:Al2O3 containing composite (P-ETDS/Al2O3) showed more enhanced thermal conductivity than those without, regardless of the operating temperature.

Keywords

Al2O3 PDMS Polysiloxane DMAA Conducting Path 

Notes

Acknowledgements

This study (Grant No. 000440680110) was supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2010.

References

  1. 1.
    Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) J Phys Chem C 111:7565CrossRefGoogle Scholar
  2. 2.
    Lin W, Moon KS, Wong CP (2009) Adv Mater 21:2421CrossRefGoogle Scholar
  3. 3.
    Mamunya Y, Boundenne A, Lebovka N, Candau Y, Lisunova M (2008) Compos Sci Technol 68:1981CrossRefGoogle Scholar
  4. 4.
    Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermochim Acta 430:155CrossRefGoogle Scholar
  5. 5.
    Xu Y, Luo X, Chung DDL (2002) J Electron Packag 124:188CrossRefGoogle Scholar
  6. 6.
    Wolff EG, Shneider DA (1998) Int J Heat Mass Transf 41:3469CrossRefGoogle Scholar
  7. 7.
    Yung KC, Wang J, Yue TM (2008) J Compos Mater 42:2615CrossRefGoogle Scholar
  8. 8.
    Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Compos Part A Appl Sci Manuf 37:727CrossRefGoogle Scholar
  9. 9.
    Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z (2009) Appl Phys Lett 95:224104CrossRefGoogle Scholar
  10. 10.
    Li TL, Hsu SLC (2010) J Phys Chem B 114:6825CrossRefGoogle Scholar
  11. 11.
    Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2009) Adv Funct Mat 19:1857CrossRefGoogle Scholar
  12. 12.
    Yang F, Zhao X, Xiao P (2010) J Eur Ceram Soc 30:3111CrossRefGoogle Scholar
  13. 13.
    Lee B, Dai G (2009) J Mater Sci 44:4848. doi: https://doi.org/10.1007/s10853-009-3739-6 CrossRefGoogle Scholar
  14. 14.
    Lee ES, Lee SM, Shanefield DJ, Cannon WR (2008) J Am Ceram Soc 91:1169CrossRefGoogle Scholar
  15. 15.
    Watari K, Ishizaki K, Tsuchiya F (1993) J Mater Sci 28:3709. doi: https://doi.org/10.1007/BF00353168 CrossRefGoogle Scholar
  16. 16.
    Hirano M, Yamauchi N (1993) J Mater Sci 28:5737. doi: https://doi.org/10.1007/BF00365175 CrossRefGoogle Scholar
  17. 17.
    Zhou W (2011) J Mater Sci 46:3883. doi: https://doi.org/10.1007/s10853-011-5309-y CrossRefGoogle Scholar
  18. 18.
    Guthy C, Du F, Brand S, Winey KI, Fischer JE (2007) J Heat Transf 129:1096CrossRefGoogle Scholar
  19. 19.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767CrossRefGoogle Scholar
  20. 20.
    Liu CH, Huang H, Wu Y, Fan SS (2004) Appl Phys Lett 84:4248CrossRefGoogle Scholar
  21. 21.
    Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Appl Phys Lett 87:161909CrossRefGoogle Scholar
  22. 22.
    Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Appl Phys Lett 89:133102CrossRefGoogle Scholar
  23. 23.
    Lee HH, Chou KS, Shih ZW (2005) Int J Adhes Adhes 25:437CrossRefGoogle Scholar
  24. 24.
    Gwinn JP, Webb RL (2003) Microelectron J 34:215CrossRefGoogle Scholar
  25. 25.
    Hong J, Lee J, Hong CK, Shim SE (2010) Curr Appl Phys 10:359CrossRefGoogle Scholar
  26. 26.
    Wang Q, Gao W, Xie Z (2003) J Appl Polym Sci 89:2397CrossRefGoogle Scholar
  27. 27.
    Zhou W, Qi S, Tu C, Zhao H (2007) J Appl Polym Sci 104:2478CrossRefGoogle Scholar
  28. 28.
    Kim H, Kim J, Kim J (2010) Microelectron Reliab 50:258CrossRefGoogle Scholar
  29. 29.
    Im H, Kim J (2010) Polym Compos 31:1669CrossRefGoogle Scholar
  30. 30.
    McGrath JE, Riffle JS, Banthia AK, Yilgor L, Wilkes GL (1983) An overview of the polymerization of cyclosiloxanes, initiation and polymerization. In: ACS Symposium Series No. 212, Chapter 2, WashingtonGoogle Scholar
  31. 31.
    Kang DH, Lee BC (2004) Polymer (Korea) 28:143Google Scholar
  32. 32.
    Carson JK, Noureldin M (2009) Int Commun Heat Mass 36:458CrossRefGoogle Scholar
  33. 33.
    Gustafsson SE, Karawacki E, Khan MN (1979) J Phys D Appl Phys 12:1411CrossRefGoogle Scholar
  34. 34.
    Barrie JA, Munday K (1983) J Membr Sci 13:175CrossRefGoogle Scholar
  35. 35.
    Bajaj P, Varshney SK (1981) Polymer 22:372CrossRefGoogle Scholar
  36. 36.
    Horiuchi H, Irie S, Nose T (1991) Polymer 32:1970CrossRefGoogle Scholar
  37. 37.
    Hashin Z, Shtrikman S (1962) J Appl Phys 33:3125CrossRefGoogle Scholar
  38. 38.
    Sushumna I, Gupta RK, Ruckenstein E (1991) J Mater Res 6:1082CrossRefGoogle Scholar
  39. 39.
    Meredith RE, Tobias CW (1962) Advances in electrochemistry and electrochemical engineering, vol 2. Wiley, New YorkGoogle Scholar
  40. 40.
    Brruggeman DAG (1935) Ann Phys 416:636CrossRefGoogle Scholar
  41. 41.
    Meredith RE, Tobias CW (1961) J Electrochem Soc 108:286CrossRefGoogle Scholar
  42. 42.
    Ramajo L, Reboredo M, Santiago D, Castro M (2008) J Compos Mater 42:2027CrossRefGoogle Scholar
  43. 43.
    Agari Y, Uno T (1985) J Appl Polym Sci 30:2225CrossRefGoogle Scholar
  44. 44.
    Scarisbrick RM (1973) J Phys D Appl Phys 6:2098CrossRefGoogle Scholar
  45. 45.
    Markov AV (2008) Polym Sci Ser A 5:709Google Scholar
  46. 46.
    Agari Y, Tanaka M, Nagai S, Uno T (1987) J Appl Polym Sci 34:1429CrossRefGoogle Scholar
  47. 47.
    Cecen V, Tavman IH, Kok M, Aydogdu Y (2009) Polym Compos 30:1229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Chemical Engineering & Material ScienceChung-Ang UniversitySeoulKorea

Personalised recommendations