Advertisement

Journal of Materials Science

, Volume 46, Issue 20, pp 6518–6527 | Cite as

Texture evolution in an Al–Cu alloy during equal channel angular pressing: the effect of starting microstructure

  • P. VenkatachalamEmail author
  • Shibayan Roy
  • B. Ravisankar
  • V. Thomas Paul
  • M. Vijayalakshmi
  • Satyam Suwas
Article

Abstract

In this article, the effect of initial microstructure on the texture evolution in 2014 Al alloy during equal channel angular pressing (ECAP) through route A has been reported. Three heat treatment conditions were chosen to generate the initial microstructures, namely (i) the recrystallization anneal (as-received), (ii) solution treatment at 768 K for 1 h, and (iii) solution treatment (768 K for 1 h) plus aging at 468 K for 5 h. Texture analyses were performed using orientation distribution function (ODF) method. The texture strength after ECAP processing was different for the three samples in the order, solutionised > solutionised plus aged condition > as-received. The prominent texture components were AE/\( \bar{A}_{E} \) and BE/\( \bar{B}_{E} \) in addition to several weaker components for the three materials. The strong texture evolution in solutionised condition has been attributed to higher strain hardening of the matrix due to higher amount of solute. In case of the as-received as well as solutionised plus aged alloy, the weaker texture could be due to the strain scattering from extensive precipitate fragmentation and dissolution during ECAP.

Keywords

Equal Channel Angular Pressing Texture Component Texture Evolution Orientation Distribution Function Equal Channel Angular Pressing Pass 

Notes

Acknowledgements

The authors are thankful to the NRCM, IISc, Bangalore and DRDO, New Delhi for technical and financial support. They express sincere gratitude to the Institute X-ray Facility at IISc for the required research facilities. The help rendered by Dr. Nilesh Gurao of IISc during the analysis of the texture results is also gratefully acknowledged.

References

  1. 1.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  2. 2.
    Segal VM (1999) Mater Sci Eng A 271:322CrossRefGoogle Scholar
  3. 3.
    Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) J Mater Sci 36:2835. doi: https://doi.org/10.1023/A:1017932417043 CrossRefGoogle Scholar
  4. 4.
    Lapovok R, McKenzie PWJ, Thomson PF, Semiatin SL (2007) J Mater Sci 42:1649. doi: https://doi.org/10.1007/s10853-006-0967-x CrossRefGoogle Scholar
  5. 5.
    El-Danaf EA, Soliman MS, Almajid AA, El-Rayes MM (2007) Mater Sci Eng A 458:226CrossRefGoogle Scholar
  6. 6.
    Ferrasse S, Segal VM, Kalidindi SR, Alford F (2004) Mater Sci Eng A 368:28CrossRefGoogle Scholar
  7. 7.
    Beyerlein IJ, Toth LS (2009) Prog Mater Sci 54:427CrossRefGoogle Scholar
  8. 8.
    Abdulhakim AA, El-Danaf EA, Soliman MS (2009) J Mater Sci 44:5654. doi: https://doi.org/10.1007/s10853-009-3796-x CrossRefGoogle Scholar
  9. 9.
    Katsas S, Dashwood R, Todd G, Jackson M, Grimes R (2010) J Mater Sci 45:4188. doi: https://doi.org/10.1007/s10853-010-4513-5 CrossRefGoogle Scholar
  10. 10.
    Suwas S, Massion RA, Toth LS, Fundenburger JJ, Eberhardt A, Skrotzki W (2006) Metall Mater Trans A 37:739CrossRefGoogle Scholar
  11. 11.
    Skrotzki W, Scheerbaum N, Oertel CG, Brokmeier HG, Suwas S, Toth LS (2006) Mater Sci Forum 503:99CrossRefGoogle Scholar
  12. 12.
    Suwas S, Toth LS, Fundenberger JJ, Eberhardt A (2005) Solid State Phenom 105:357CrossRefGoogle Scholar
  13. 13.
    Skrotzki W, Scheerbaum N, Oertel CG, Brokmeier HG, Suwas S, Toth LS (2007) Acta Mater 55:2211CrossRefGoogle Scholar
  14. 14.
    Suwas S, Massion RA, Toth LS, Fundenberger JJ, Beausir B (2009) Mater Sci Eng A 520:134CrossRefGoogle Scholar
  15. 15.
    Massion RA, Suwas S, Toth LS (2005) Mater Sci Forum 495:839CrossRefGoogle Scholar
  16. 16.
    Zhilyaev AP, Oh-ishi K, Raab GI, McNelley TR (2006) Mater Sci Eng A 441:245CrossRefGoogle Scholar
  17. 17.
    Skrotzki W, Scheerbaum N, Oertel CG, Brokmeier HG, Suwas S, Tóth LS (2006) Mater Sci Forum 503–504:99CrossRefGoogle Scholar
  18. 18.
    Chowdhury SG, Xu C, Langdon TG (2008) Mater Sci Eng A 473:219CrossRefGoogle Scholar
  19. 19.
    Skrotzki W, Scheerbaum N, Oertel CG, Arruffat-Massion R, Suwas S, Toth LS (2007) Acta Mater 55:2013CrossRefGoogle Scholar
  20. 20.
    Suwas S, Toth LS, Fundenberger JJ, Eberhardt A, Skrotzki W (2003) Scr Mater 49:1203CrossRefGoogle Scholar
  21. 21.
    Kapoor R, Chakravartty JK (2007) Acta Mater 55:5408CrossRefGoogle Scholar
  22. 22.
    Oh-ishi K, Zhilyaev AP, McNelley TR (2005) Mater Sci Eng A 410:183CrossRefGoogle Scholar
  23. 23.
    Zhang K-F, Hong-hua Y (2009) Trans Non-ferrous Met Soc China 19:s307CrossRefGoogle Scholar
  24. 24.
    Chang SY, Ahn BD, Hong SK, Kamado S, Kojima Y, Shin DH (2005) J Alloys Comp 386:197CrossRefGoogle Scholar
  25. 25.
    Venkatachalam P, Ravisankar B, Kumaran S (2010) Int J Microstruct Mater Prop 5:88Google Scholar
  26. 26.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143CrossRefGoogle Scholar
  27. 27.
    Pawlik K (1986) Phys Stat Sol 134(b):477CrossRefGoogle Scholar
  28. 28.
    Roven HJ, Manping L, Werenskiold JC (2008) Mater Sci Eng A 483:54CrossRefGoogle Scholar
  29. 29.
    Xu C, Furukawa M, Horita Z, Langdon TG (2005) Acta Mater 53:749CrossRefGoogle Scholar
  30. 30.
    Liu Z, Bai S, Zhou X, Gu Y (2011) Mater Sci Eng A 528:2217CrossRefGoogle Scholar
  31. 31.
    Gutierrez-Urruti I, Munoz-Morris MA, Morris DG (2005) Mater Sci Eng A 394:399CrossRefGoogle Scholar
  32. 32.
    Groma I (1998) Phys Rev B 57:7535CrossRefGoogle Scholar
  33. 33.
    Borbely A, Groma I (2001) Appl Phys Lett 76:1772CrossRefGoogle Scholar
  34. 34.
    May J, Dinkel M, Amberger D, Hoppel HW, Goken M (2007) Metall Mater Trans A 38:1941CrossRefGoogle Scholar
  35. 35.
    Gubicza J, Ungar T (2007) Z Krist 222:567Google Scholar
  36. 36.
    Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungar T (2005) Mater Sci Eng A 400:334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. Venkatachalam
    • 1
    Email author
  • Shibayan Roy
    • 2
  • B. Ravisankar
    • 1
  • V. Thomas Paul
    • 3
  • M. Vijayalakshmi
    • 3
  • Satyam Suwas
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia
  3. 3.Physical Metallurgy DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations