Journal of Materials Science

, Volume 46, Issue 20, pp 6491–6499 | Cite as

Dissimilar joining of Al/Mg light metals by compound casting process

  • E. HajjariEmail author
  • M. Divandari
  • S. H. Razavi
  • S. M. Emami
  • T. Homma
  • S. Kamado


“Compound casting” was used for production of lightweight Al/Mg couples. In order to prepare the Al/Mg couples using this process, each of the aluminum and magnesium molten metal was cast around solid cylindrical inserts of the other metal. After solidification, the interfacial microstructure and shear strength of the joint were studied. Characterization of Al/Mg interface by an optical microscope and scanning electron microscope showed that in the case of casting aluminum melt around a magnesium insert, a gap is formed at the interface, while in the process of casting magnesium melt around an aluminum insert, a relatively uniform interface composed of three different layers is formed at the interface. The results of the X-ray diffraction, energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectroscopy, and microhardness analysis of the interface showed that these three layers are mainly composed of high-hardness Al–Mg intermetallic compounds. Furthermore, it was found that the thickness of the interface is not constant throughout Al/Mg joint, and varies gradually from 190 μm at the bottom to 140 μm in the middle and 50 μm at the top of the sample. The results of shear strength tests obviously showed that the strength of the interface depends on the interface thickness and increases by decreasing the thickness of the interface.


Shear Strength Intermetallic Compound Electrical Discharge Machine Laser Welding Eutectic Structure 



The authors would like to thank Messrs. T. Ishihara and F. Uchida for technical assistance in characterization of the samples. The first author also acknowledges the Iran Ministry of Science, Research, and Technology and Shahid Chamran University of Ahwaz for financial support.


  1. 1.
    Liu P, Li Y, Geng H, Wang J (2007) Mater Lett 61:1288CrossRefGoogle Scholar
  2. 2.
    Borrisutthekul R, Miyashita Y, Mutoh Y (2005) Sci Tech Adv Mater 6:199CrossRefGoogle Scholar
  3. 3.
    Liu LM, Wang HY, Zhang ZD (2007) Scr Mater 56:473CrossRefGoogle Scholar
  4. 4.
    Liu L, Wang H, Song G, Ye J (2007) J Mater Sci 42:565. doi: CrossRefGoogle Scholar
  5. 5.
    Zettler R, Augusto A, Silva MD, Rodrigues R, Blanco A, Santos JFD (2006) Adv Eng Mater 8:415CrossRefGoogle Scholar
  6. 6.
    Sato YS, Park SHC, Michiuchi M, Kokawa H (2004) Scr Mater 50:1233CrossRefGoogle Scholar
  7. 7.
    Yan J, Xu Z, Li Z, Li L, Yang S (2005) Scr Mater 53:585CrossRefGoogle Scholar
  8. 8.
    Peng L, Yajiang L, Haoran G, Juan W (2006) Vacuum 80:395CrossRefGoogle Scholar
  9. 9.
    Wang J, Yajiang L, Wanqun H (2008) React Kinet Catal 95:71CrossRefGoogle Scholar
  10. 10.
    Zhao LM, Zhang ZD (2008) Scr Mater 58:283CrossRefGoogle Scholar
  11. 11.
    Volder JP (1993) Aluminium 4:11Google Scholar
  12. 12.
    Noguchi T, Kamota S, Sato T, Sakai M (1993) AFS Trans 89:231Google Scholar
  13. 13.
    Avci A, Ilkaya N, Simsir M, Akdemir A (2009) J Mater Process Technol 209:1410CrossRefGoogle Scholar
  14. 14.
    Ho JS, Lin CB, Liu CH (2004) J Mater Sci 39:2473. doi: CrossRefGoogle Scholar
  15. 15.
    Pan J, Yoshida M, Sasaki G, Fukunaga H, Fujimura H, Matsuura M (2000) Scr Mater 43:155CrossRefGoogle Scholar
  16. 16.
    Choe KH, Park KS, Kang BH, Cho GS, Kim KY, Lee KW, Kim MH, Ikenaga A, Koroyasu S (2008) J Mater Sci Technol 24:60Google Scholar
  17. 17.
    Divandari M, Vahid Golpayegani AR (2009) Mater Des 30:3279CrossRefGoogle Scholar
  18. 18.
    Scanlan M, Browne DJ, Bates A (2005) Mater Sci Eng A 413–414:66CrossRefGoogle Scholar
  19. 19.
    Papis KJM, Hallstedt B, Loffler JF, Uggowitzer PJ (2008) Acta Mater 56:3036CrossRefGoogle Scholar
  20. 20.
    Papis KJM, Loffler JF, Uggowitzer PJ (2010) Mater Sci Eng A 527:2274CrossRefGoogle Scholar
  21. 21.
    Sacerdote-Peronnet M, Guiot E, Bosselet F, Dezellus O, Rouby D, Viala JC (2007) Mater Sci Eng A 445–446:296CrossRefGoogle Scholar
  22. 22.
    Dezellus O, Milani L, Bosselet F, Sacerdote-Peronnet M, Rouby D, Viala JC (2008) J Mater Sci 43:1749. doi: CrossRefGoogle Scholar
  23. 23.
    Reaction-Web, Fact-Web Programs.
  24. 24.
    Thermal properties of metals (2002) ASM ready reference, 1st edn. ASM International, Materials ParkGoogle Scholar
  25. 25.
    Alloy phase diagrams (1995) ASM Handbook, vol 3, 9th edn. ASM International, Materials ParkGoogle Scholar
  26. 26.
    Dietrich D, Nickel D, Krause M, Lampke T, Coleman MP, Randle V (2010) J Mater Sci 46:357. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Hajjari
    • 1
    Email author
  • M. Divandari
    • 1
  • S. H. Razavi
    • 1
  • S. M. Emami
    • 1
  • T. Homma
    • 2
  • S. Kamado
    • 2
  1. 1.Department of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran
  2. 2.Department of Mechanical EngineeringNagaoka University of TechnologyNagaokaJapan

Personalised recommendations