Journal of Materials Science

, Volume 46, Issue 19, pp 6396–6401 | Cite as

Synthesis and property study on Eu(III) complexes of modified poly(N-isopropylacrylamide)

  • Xiangdong Tao
  • Ran Zhang
  • Zhengguo Gao
  • Toshifumi Satoh
  • Toyoji Kakuchi
  • Qian Duan


Poly(N-isopropylacrylamide) with aromatic end groups (Ar-PNIPAM) were synthesized by atom transfer radical polymerization of N-isopropylacrylamide in isopropanol using phenyl 2-chloropropionate, (4′-phenyl)phenyl 2-chloropropionate, and (2′,6′-diphenyl)phenyl 2-chloropropionate as initiators and CuCl/tris(2-dimethylaminoethyl)amine (Me6TREN) as a catalytic system. The resulting polymers had narrow polydispersity index of 1.10–1.14 and molecular weights of 3700–4600 g mol−1. Then, novel functional complexes of Ar-PNIPAM, Europium(III) (Eu(III)), and α-Thenoyltrifluoroacetone (TTA) (Ar-PNIPAM/Eu(III)/TTA) with thermosensitive and fluorescent properties were synthesized and characterized by Fourier transform infrared spectra and fluorescence spectroscopy. Metal Eu(III) was not only bonded to oxygen and nitrogen atoms of polymer chain in PNIPAM, but also bonded to TTA. The maximum emission intensity of the complexes at 613 nm was enhanced about 22, 27, 33 times compared with that of the corresponding Eu(III). The lower critical solution temperatures (LCSTs) of Ar-PNIPAM/Eu(III)/TTA were slightly greater compared with that of PNIPAM. Eu(III) complexes had excellent fluorescence performance, the fluorescence spectrum presented characteristic emission of Eu(III) at 613 nm.


Atom Transfer Radical Polymerization Atom Transfer Radical Polymerization Lower Critical Solution Temperature EuCl3 Maximum Emission Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heskins M, Gillet JE (1968) J Macromol Sci Chem 2:1441CrossRefGoogle Scholar
  2. 2.
    Yamato M, Kwon OH, Hirose M, Kikuchi A, Okano T (2001) J Biomed Mater Res 55:137CrossRefGoogle Scholar
  3. 3.
    He XL, Yu S, Dong YY, Yan FY, Chen L (2009) J Mater Sci 44:4078. doi: 10.1007/s10853-009-3588-3 CrossRefGoogle Scholar
  4. 4.
    Ramkissoon-Ganorkar C, Liu F, Baudys M, Kim SW (1999) J Control Release 59:287CrossRefGoogle Scholar
  5. 5.
    Kim J, Serpe MJ, Lyon LA (2005) Angew Chem Int Ed 44:1333CrossRefGoogle Scholar
  6. 6.
    Yakushiji T, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T (1999) Anal Chem 6:1125CrossRefGoogle Scholar
  7. 7.
    Ganachaud F, Monteiro MJ, Gilber RG, Dourges M, Thang SH, Rizzardo E (2000) Macromolecules 33:6738CrossRefGoogle Scholar
  8. 8.
    Schilli C, Lanzendorfer MG, Muller AHE (2002) Macromolecules 35:6819CrossRefGoogle Scholar
  9. 9.
    Ray B, Isobe Y, Matsumoto K, Habaue S, Okamoto Y, Kamigaito M, Sawamoto M (2004) Macromolecules 37:1702CrossRefGoogle Scholar
  10. 10.
    Convertine AJ, Ayres N, Scales CW, Lowe AB, McCormick CL (2004) Biomacromolecules 5:1177CrossRefGoogle Scholar
  11. 11.
    Matyjaszewski K, Xia J (2001) Chem Rev 101:2921CrossRefGoogle Scholar
  12. 12.
    Kamigaito M, Ando T, Sawamoto M (2001) Chem Rev 101:3689CrossRefGoogle Scholar
  13. 13.
    Xia Y, Burke N, Stover H (2006) Macromolecules 39:2275CrossRefGoogle Scholar
  14. 14.
    Sha K, Li DS, Li YP, Wang SW, Wang JY (2007) J Mater Sci 42:4916. doi: 10.1007/s10853-006-0397-9 CrossRefGoogle Scholar
  15. 15.
    Duan Q, Miura Y, Narumi A, Shen XD, Sato S-I, Satoh T, Kakuchi T (2006) J Polym Sci A Polym Chem 44:1117CrossRefGoogle Scholar
  16. 16.
    Duan Q, Narumi A, Miura Y, Shen XD, Sato S-I, Satoh T, Kakuchi T (2006) Polym J 38:306CrossRefGoogle Scholar
  17. 17.
    Kita R, Wiegand S (2005) Macromolecules 38:4554CrossRefGoogle Scholar
  18. 18.
    Okada Y, Tanaka F (2005) Macromolecules 38:4465CrossRefGoogle Scholar
  19. 19.
    Wang YJ, Jiang HL (2007) Mater Lett 61:2779CrossRefGoogle Scholar
  20. 20.
    Guo XY, Yin WQ, Sun XH, Huang XH, Lu TH (2009) Polym Bull 62:337CrossRefGoogle Scholar
  21. 21.
    Zhang HJ, Fu LS, Wang SB, Meng QG, Yang KY, Ni JZ (1999) Mater Lett 38:260CrossRefGoogle Scholar
  22. 22.
    Taylor DM, Carter CP (1962) J Inorg Nucl Chem 24:387CrossRefGoogle Scholar
  23. 23.
    Cai Y, Chen MQ, Ji HN, Huang XH, Shen J (2003) Acta Polym Sin 4:599Google Scholar
  24. 24.
    Li Q, Li T, Wu JG (2001) J Phys Chem B 105:12293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xiangdong Tao
    • 1
  • Ran Zhang
    • 1
  • Zhengguo Gao
    • 1
  • Toshifumi Satoh
    • 2
  • Toyoji Kakuchi
    • 2
  • Qian Duan
    • 1
  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunChina
  2. 2.Division of Biotechnology and Macromolecular Chemistry, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations