Journal of Materials Science

, Volume 46, Issue 19, pp 6344–6354 | Cite as

Strength variability of single flax fibres

  • Mustafa AslanEmail author
  • Gary Chinga-Carrasco
  • Bent F. Sørensen
  • Bo Madsen


Due to the typical large variability in the measured mechanical properties of flax fibres, they are often employed only in low grade composite applications. The present study aims to investigate the reasons for the variability in tensile properties of flax fibres. It is found that an inaccuracy in the determination of the cross-sectional area of the fibres is one major reason for the variability in properties. By applying a typical circular fibre area assumption, a considerable error is introduced into the calculated mechanical properties. Experimental data, together with a simple analytical model, are presented to show that the error is increased when the aspect ratio of the fibre cross-sectional shape is increased. A variability in properties due to the flax fibres themselves is found to originate from the distribution of defects along the fibres. Two distinctive types of stress–strain behaviours (linear and nonlinear) of the fibres are found to be correlated with the amount of defects. The linear stress–strain curves tend to show a higher tensile strength, a higher Young’s modulus, and a lower strain to failure than the nonlinear curves. Finally, the fibres are found to fracture by a complex microscale failure mechanism. Large fracture zones are governed by both surface and internal defects; and these cause cracks to propagate in the transverse and longitudinal directions.


Aspect Ratio Cottonized Fibre Strain Behaviour Flax Fibre Polarise Optical Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge Stergios Goutianos and Hans Lilholt for helpful advices and Shahid Mehmood for technical assistance, and for valuable input on fibre defects. The research has been partly funded by the European Community’s Seventh Framework Programme under grant agreement no 214467 (NATEX), and grant no 274-07-0300 (WoodFibre3D) by the Danish Agency for Science, Technology and Innovation.


  1. 1.
    Meijer WJM, Vertregt N, Rutgers B, Van de Waart M (1995) Ind Crops Prod 4:273CrossRefGoogle Scholar
  2. 2.
    Bos HL, Van den Oever MJA, Peters OCJJ (2002) J Mater Sci 37:1683. doi: 10.1023/A:1014925621252 CrossRefGoogle Scholar
  3. 3.
    Joffe R, Andersons J, Wallstrom L (2003) Composites A 34:603CrossRefGoogle Scholar
  4. 4.
    Bledzki K, Gassan SJ (1999) Prog Polym Sci 24:221CrossRefGoogle Scholar
  5. 5.
    Thomason JL, Carruthers J, Johnson KG (2011) Compos Sci Technol 71:1008CrossRefGoogle Scholar
  6. 6.
    Virk AS (2010) PhD thesis, University of Plymouth, United KingdomGoogle Scholar
  7. 7.
    Baley C (2002) Composites A 33:939CrossRefGoogle Scholar
  8. 8.
    Davies GC, Bruce DM (1998) Textile Res J 68:623CrossRefGoogle Scholar
  9. 9.
    Charlet K, Baley C, Morvan C (2007) Composites A 38:1912CrossRefGoogle Scholar
  10. 10.
    Virk AS, Hall W, Summerscales J (2010) Compos Sci Technol 50:995CrossRefGoogle Scholar
  11. 11.
    Cierpucha W, Kozlowski R, Mankowski R, Wasko J, Mankowski T (2004) Fibres Text East Eur 47:13Google Scholar
  12. 12.
    Harwood R, Nusenbaum V, Harwood J (2008) International Conference on Flax and Other Bast Plants Saskaaton Canada, p 118Google Scholar
  13. 13.
    Reme PA, Johnsen PO, Helle T (2002) J Pulp Pap Sci 28:122Google Scholar
  14. 14.
    Chinga-Carrasco G, Lenes M, Johnsen PO, Hult EL (2009) Micron 40:761CrossRefGoogle Scholar
  15. 15.
    Terasaki Y, Noda J, Koichi G (2009) Adv Mat Res 79:235CrossRefGoogle Scholar
  16. 16.
    Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Compos A 38:461CrossRefGoogle Scholar
  17. 17.
    Andersons J, Sparnins E, Joffe R, Wallstrom L (2005) Compos Sci Technol 65:693CrossRefGoogle Scholar
  18. 18.
    Mehmood S (2009) Unpublished results: Risø National Laboratory for Sustainable Energy. Technical University of Denmark, DenmarkGoogle Scholar
  19. 19.
    Charlet K, Eve S, Jernot JP, Gomina M, Bread J (2009) Procedia Eng 1:233CrossRefGoogle Scholar
  20. 20.
    Kölln K, Grotkopp I, Burghammer M, Roth SV, Funari SS, Dommach M, Muller M (2005) J Synchron Rad 12:739CrossRefGoogle Scholar
  21. 21.
    Wang HH, Drummond JG, Reath SM, Hunt K, Watson PA (2001) Wood Sci Technol 34:493CrossRefGoogle Scholar
  22. 22.
    Hill C, Hughes M (2010) J Biobased Mater Bioenergy 4:148CrossRefGoogle Scholar
  23. 23.
    Thygesen LG, Eder M, Burgert I (2007) J Mater Sci 42:558. doi: 10.1007/s10853-006-1113-5 CrossRefGoogle Scholar
  24. 24.
    Zafeiropoulos NE, Dijon GG, Baillie CA (2007) Composites A 38:621CrossRefGoogle Scholar
  25. 25.
    Baley C (2004) J Mater Sci 39:331. doi: 10.1023/ CrossRefGoogle Scholar
  26. 26.
    Bos HL, Donald AM (1999) J Mater Sci 34:3029. doi: 10.1023/A:1004650126890 CrossRefGoogle Scholar
  27. 27.
    Sparnins E, Andersons J (2009) J Mater Sci 44:5697. doi: 10.1007/s10853-009-3785-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mustafa Aslan
    • 1
    Email author
  • Gary Chinga-Carrasco
    • 2
  • Bent F. Sørensen
    • 1
  • Bo Madsen
    • 1
  1. 1.Materials Research Division, Risø National Laboratory for Sustainable EnergyTechnical University of DenmarkRoskildeDenmark
  2. 2.Paper and Fibre Research InstituteTrondheimNorway

Personalised recommendations