Journal of Materials Science

, Volume 46, Issue 18, pp 6140–6147 | Cite as

Effects of particle plasticity characteristics on local interface stress in particle reinforced composite during uniaxial tension

  • H. M. Xu
  • G. Q. WuEmail author
  • W. Sha


For elastoplastic particle reinforced metal matrix composites, failure may originate from interface debonding between the particles and the matrix, both elastoplastic and matrix fracture near the interface. To calculate the stress and strain distribution in these regions, a single reinforcing particle axisymmetric unit cell model is used in this article. The nodes at the interface of the particle and the matrix are tied. The development of interfacial decohesion is not modelled. Finite element modelling is used, to reveal the effects of particle strain hardening rate, yield stress and elastic modulus on the interfacial traction vector (or stress vector), interface deformation and the stress distribution within the unit cell, when the composite is under uniaxial tension. The results show that the stress distribution and the interface deformation are sensitive to the strain hardening rate and the yield stress of the particle. With increasing particle strain hardening rate and yield stress, the interfacial traction vector and internal stress distribution vary in larger ranges, the maximum interfacial traction vector and the maximum internal stress both increase, while the interface deformation decreases. In contrast, the particle elastic modulus has little effect on the interfacial traction vector, internal stress and interface deformation.


Local Stress Uniaxial Tension Unit Cell Model High Yield Stress Ideal Plastic 



This research project is supported by the Ph.D. Programs Foundation of Ministry of Education of China (No. 20070006020), the Foundation of Beijing Technology New-Star (Nova) Program (No. 2007B016), and the National Natural Science Foundation of China (50901005).


  1. 1.
    Guild FJ, Young RJ (1989) J Mater Sci 24:298. doi: CrossRefGoogle Scholar
  2. 2.
    Llorca J, Elices M, Termonia Y (2000) Acta Mater 48:4589CrossRefGoogle Scholar
  3. 3.
    Segurado J, Llorca J, Gonzalez C (2002) Scr Mater 46:525CrossRefGoogle Scholar
  4. 4.
    Segurado J, Llorca J (2002) J Mech Phys Solids 50:2017CrossRefGoogle Scholar
  5. 5.
    Llorca J, Segurado J (2004) Mater Sci Eng A 365:267CrossRefGoogle Scholar
  6. 6.
    Böhm HJ, Eckschlager A, Han W (2002) Comput Mater Sci 25:42CrossRefGoogle Scholar
  7. 7.
    Han W, Eckschlager A, Böhm HJ (2001) Comp Sci Technol 61:1581CrossRefGoogle Scholar
  8. 8.
    Sahu S, Broutman LJ (1972) Polym Eng Sci 12:91CrossRefGoogle Scholar
  9. 9.
    Lu S, Yan L, Zhu X, Qi Z (1992) J Mater Sci 27:4633. doi: CrossRefGoogle Scholar
  10. 10.
    Wu S (1987) Polym Eng Sci 27:335CrossRefGoogle Scholar
  11. 11.
    Choi J, Yee AF, Laine RM (2004) Macromolecules 37:3267CrossRefGoogle Scholar
  12. 12.
    Wang SJ, Wu GQ, Li RH, Luo GX, Huang Z (2006) Mater Lett 60:1863CrossRefGoogle Scholar
  13. 13.
    Xue Z, Huang Y, Li M (2002) Acta Mater 50:149CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.School of Planning, Architecture and Civil EngineeringQueen’s University BelfastBelfastUK

Personalised recommendations