Journal of Materials Science

, Volume 46, Issue 18, pp 6111–6117 | Cite as

Microstructure evolution of gold thin films under spherical indentation for micro switch contact applications

  • Brice ArrazatEmail author
  • Vincent Mandrillon
  • Karim Inal
  • Maxime Vincent
  • Christophe Poulain


RF MEMS (Radio Frequency Micro Electro Mechanical System) switches are promising devices but their gold-on-gold contacts, assimilated for this study to a sphere/plane contact, represent a major reliability issue. A first step toward understanding failure mechanisms is to investigate the contact metal microstructure evolution under static and cyclic loading. After static and cyclic loading of sputtered gold thin films under spherical indentation, high-resolution Electron Back Scatter Diffraction (EBSD) is used to investigate the contact area. Grain rotation against {111} fiber texture of 1-μm-thick sputtered gold thin film is a signature of plastic deformation. Grain rotation is observed above 1.6 mN under static loading using a spherical diamond indenter with 50-μm tip radius. The heterogeneity in grain rotation observed corresponds to a greater plastic deformation in the middle of the indent than at the edge. A 30° grain rotation due to cyclic work hardening is observed for a half-million mechanical cycles under 300 μN load using a spherical gold tip (20 μm radius). The same test in hot switching mode induces a grain growth in the contact area. Therefore, thermal effects occurring during hot switching are underlined.


Pole Figure Crystallographic Texture Spherical Indentation Micro Electro Mechanical System Fiber Texture 


  1. 1.
    Rebeiz GM, Muldavin JB (2001) IEEE Microwave Mag 2(4):59CrossRefGoogle Scholar
  2. 2.
    Coutu RA, Kladitis PE, Starman LA, Reid JR (2004) Sensors Actuators A 115(2–3):252CrossRefGoogle Scholar
  3. 3.
    Coutu RA, Reid JR, Cortez R, Strawser RE, Kladitis PE (2006) IEEE Trans Compon Packag Technol 29(2):341CrossRefGoogle Scholar
  4. 4.
    Chen L, Lee H, Guo ZJ, McGruer NE, Gilbert KW, Mall S, Leedy KD, Adams GG (2007) J Appl Phys 102(7):074910CrossRefGoogle Scholar
  5. 5.
    Yan X, McGruer NE, Adams GG, Majumder S (2003) In: 12th International conference on transducers, solid-state sensors, actuators and microsystems, BostonGoogle Scholar
  6. 6.
    Chen L, Guo ZJ, Du Y, McGruer NE, Adams GG (2006) IEEE Microwave Mag Google Scholar
  7. 7.
    Gregori G, Clarke DR (2006) J Appl Phys 100(9):094904CrossRefGoogle Scholar
  8. 8.
    Duvivier PY, Mandrillon V, Inal K, Dieppedale C, Deldon-Martoscia S, Polizzi J (2010) In: 2010 Proceedings of the 56th IEEE Holm conference on electrical contacts, MinneapolisGoogle Scholar
  9. 9.
    Humphreys FJ (2001) J Mater Sci 36(16):3833. doi: CrossRefGoogle Scholar
  10. 10.
    Pharr GM, Strader JH, Oliver WC (2009) J Mater Res 24(3):653CrossRefGoogle Scholar
  11. 11.
    Vincent M, Chiesi L, Rousset P, Lapiere C, Poulain C, Carbone L, Houze F, Delamare J (2009) In: 2009 Proceedings of the 55th IEEE Holm Conference on electrical contacts, VancouverGoogle Scholar
  12. 12.
    Fischer-Cripps AC (2004) In: Nanoindentation, Springer-verlag, New YorkGoogle Scholar
  13. 13.
    Pharr GM, Taljat B (2004) Int J Solids Struct 41:3891CrossRefGoogle Scholar
  14. 14.
    Kalidindi SR, Bronkhorst CA, Anand L (1992) Phil Trans R Soc Lond 341:443CrossRefGoogle Scholar
  15. 15.
    Cao Y, Allameh S, Nankivil D, Sethiaraj S, Otiti T, Soboyejo W (2006) Mater Sci Eng A 427(1–2):232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Brice Arrazat
    • 1
    • 2
    Email author
  • Vincent Mandrillon
    • 1
    • 2
  • Karim Inal
    • 1
  • Maxime Vincent
    • 2
    • 3
  • Christophe Poulain
    • 2
  1. 1.Ecole Nationale Supérieure des Mines de Saint-Etienne, Armines, Centre Microélectronique de Provence—Georges CharpakGardanneFrance
  2. 2.CEA-Léti, MinatecGrenobleFrance
  3. 3.Division of InnovationSchneider Electric IndustriesGrenobleFrance

Personalised recommendations