Advertisement

Journal of Materials Science

, Volume 46, Issue 18, pp 6096–6105 | Cite as

Improved optical and electrical response in metal–polymer nanocomposites for photovoltaic applications

  • V. Chaudhary
  • A. K. Thakur
  • A. K. BhowmickEmail author
Article

Abstract

Hybrid nanocomposites based on polyethylene glycol (PEG) embedded with nanoscopic Ag particles were prepared by two distinct approaches: in situ and ex situ chemical processing routes. The effect of Ag loading on tailored optical and electrical responses in the two classes of metal–polymer nanocomposites (MPNs) was investigated. Transmission electron microscopy of the in situ MPN sample revealed core–shell-type combination comprising Ag nanoparticles lying at the core surrounded by polymeric (PEG) shell. On the other hand, ex situ MPNs exhibited dispersed phase microstructure with uneven distribution of Ag nanoparticles in the PEG matrix. Comparison of the thermal properties of in situ and ex situ MPNs confirmed that the MPN obtained through in situ process with 2 wt% of Ag contents displayed higher thermal stability (≈18%) relative to ex situ MPN of the same composition. The absorption spectrum confirmed clear, blue shift with enhanced band gap in the case of in situ MPN relative to its ex situ counterpart. The Ag–PEG nanocomposites prepared by both the processes exhibited metallic I–V response. Electrical transport observed in terms of resistivity variation with temperature confirmed typical semiconducting behavior in the composite phase in sharp contrast to the insulating property of the host PEG. A large decrease (≈65%) in activation energy was observed in the case of in situ MPN at higher loading of Ag possibly because of the higher mobility assisted by tunneling of charge carriers through polymeric spacers in the composite phase. The drastic improvement in optical and electrical responses of the nanocomposites indicated the suitability for photovoltaic and optoelectronic applications.

Keywords

Metal Nanoparticles Polymer Nanocomposites Host Polymer Versus Response Composite Formation 

Notes

Acknowledgements

The financial support of IIT Patna is gratefully acknowledged to enable the authors undertake this study. VC is thankful to the Director, IIT Patna, for providing the laboratory and instrumentation facilities. Thanks are also due to the Director, AIIMS, New Delhi for providing the facilities of TEM. Special thanks are also due to the co-workers of Prof A K Bhowmick, who are working in the Rubber Technology Centre, IIT Kharagpur, for their valuable cooperation during experiments. AKB is thankful to DST, New Delhi and Commonwealth of Australia for providing Indo-Australia Strategic Research Fund.

References

  1. 1.
    Chatterjee S (2008) J Mater Sci 43:1696. doi: https://doi.org/10.1007/s10853-007-2376-1 CrossRefGoogle Scholar
  2. 2.
    Jager C, Bilke R, Heim M, Haarer D, Karickal H, Thelakkat M (2001) Synth Metals 121:1543CrossRefGoogle Scholar
  3. 3.
    Karim SMA, Nomura R, Sanda F, Seki S, Watanabe M, Masuda T (2003) Macromolecules 36:4786CrossRefGoogle Scholar
  4. 4.
    Pal K, Kang DJ, Zhang ZX, Kim JK (2010) Langmuir 26:3609CrossRefGoogle Scholar
  5. 5.
    Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. Johan Wiley & Sons, New JerseyGoogle Scholar
  6. 6.
    Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley VCH Verlag, GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  7. 7.
    Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nano Lett 10:1253CrossRefGoogle Scholar
  8. 8.
    Yuan Y-Y, Liu X-Q, Wang Y-C, Wang J (2009) Langmuir 23:2126Google Scholar
  9. 9.
    Chen Q, Yue L, Xie F, Zhou M, Fu Y, Zhang Y, Weng J (2008) J Phys Chem 112:10004Google Scholar
  10. 10.
    Kickelbick G (2003) Prog Polym Sci 28:83CrossRefGoogle Scholar
  11. 11.
    Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) J Nanopart Res 6:411CrossRefGoogle Scholar
  12. 12.
    Temgire MK, Joshi SS (2004) Rad Phys Chem 71:1039CrossRefGoogle Scholar
  13. 13.
    Mukherjee B, Mukherjee M (2009) Appl Phys Lett 94:73510-1Google Scholar
  14. 14.
    Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Mater Chem Phys 93:117CrossRefGoogle Scholar
  15. 15.
    Lu J, Moon K-S, Xu J, Wong CP (2006) J Mater Chem 16:1543. doi: https://doi.org/10.1039/b514182f CrossRefGoogle Scholar
  16. 16.
    Ohnuma A, Cho EC, Jiang M, Ohtani B, Xia Y (2009) Langmuir 25:13880CrossRefGoogle Scholar
  17. 17.
    Rajesh, Ahuja T, Kumar D (2009) Sens Actuators B 136:275CrossRefGoogle Scholar
  18. 18.
    Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) J Am Chem Soc 129:7661CrossRefGoogle Scholar
  19. 19.
    Khemtong C, Kessinger CW, Gao J (2009) Chem Commn 24:3497CrossRefGoogle Scholar
  20. 20.
    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Compos Part B 39:933CrossRefGoogle Scholar
  21. 21.
    Mayer ABR (1998) Mater Sci Eng C 6:155CrossRefGoogle Scholar
  22. 22.
    Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Adv Eng Mater 112:1177CrossRefGoogle Scholar
  23. 23.
    Pakula C, Zaporojtchenko V, Strunskus T, Herges R, Faupel F (2010) Nanotechnology 21:465201CrossRefGoogle Scholar
  24. 24.
    Bernabo M, Pucci A, Ramanitra HH, Ruggeri G (2010) Materials 3:1461CrossRefGoogle Scholar
  25. 25.
    Gupta K, Jana PC, Meikap AK (2010) Synth Metals 160:1566CrossRefGoogle Scholar
  26. 26.
    Yu D-G, Lin W-C, Lin C-H, Chang L-M, Yang M-C (2007) Mater Chem Phys 101:93CrossRefGoogle Scholar
  27. 27.
    Mukherjee S, Mukherjee M (2006) J Phys Condens Matter 18:11233CrossRefGoogle Scholar
  28. 28.
    Datta H, Bhowmick AK, Singha NK (2009) Polymer 50:3259CrossRefGoogle Scholar
  29. 29.
    Mbhele ZH, Salemane MG, Sittert CGCEV, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Chem Mater 15:5019CrossRefGoogle Scholar
  30. 30.
    Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, Chen X (2007) Mater Chem Phys 106:412CrossRefGoogle Scholar
  31. 31.
    Gautam A, Ram S (2010) Mater Chem Phys 119:266CrossRefGoogle Scholar
  32. 32.
    Sadhu S, Bhowmick AK (2005) J Mater Sci 40:1633–1642  https://doi.org/10.1007/S10853-005-0663-2 CrossRefGoogle Scholar
  33. 33.
    Bandyopadhyay A, Sarkar MD, Bhowmick AK (2005) J Polym Sci Part B Polym Phys 43:2399CrossRefGoogle Scholar
  34. 34.
    Kar S, Bhowmick AK (2009) J Nanosci Nanotechnol 9:3144CrossRefGoogle Scholar
  35. 35.
    Ganguly A, Bhowmick AK (2008) Macromolecules 41:6246CrossRefGoogle Scholar
  36. 36.
    Maiti M, Bhowmick AK (2009) J Appl Polym Sci 111:1094CrossRefGoogle Scholar
  37. 37.
    Bhattacharya M, Bhowmick AK (2010) Rubber Chem Technol 83:16CrossRefGoogle Scholar
  38. 38.
    Lee PC, Meisel D (1982) J Phys Chem 86:3391CrossRefGoogle Scholar
  39. 39.
    Streetman B, Banerjee S (2000) Solid state electronic devices. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology PatnaPatnaIndia
  2. 2.Department of PhysicsIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations