Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5595–5614 | Cite as

Review on polymer/graphite nanoplatelet nanocomposites

  • Bin Li
  • Wei-Hong ZhongEmail author
Anniversary Review

Abstract

Graphite nanoplatelets (GNPs) are a type of graphitic nanofillers composed of stacked 2D graphene sheets, having outstanding electrical, thermal, and mechanical properties. Furthermore, owing to the abundance of naturally existing graphite as the source material for GNPs, it is considered an ideal reinforcing component to modify the properties of polymers. The 2D confinement of GNPs to the polymer matrix and the high surface area make the GNP a distinctive nanofiller, showing superiorities in modification of most properties, compared with other carbon nanofillers. This review will summarize the development of polymer/GNP nanocomposites in recent years, including the fabrication of GNPs and its nanocomposites, processing issues, viscoelastic properties, mechanical properties, electrical and dielectric properties, thermal conductivity and thermal stability. The discussion of reinforcing effect will be based on dispersion, particle geometry, concentrations, as well as the 2D structures and exfoliation of GNPs. The synergy of GNPs with other types of carbon nanofillers used as hybrid reinforcing systems shows great potential and could significantly broaden the application of GNPs. The relevant research will also be included in this review.

Keywords

Storage Modulus Impact Toughness Percolation Threshold Polymer Nanocomposites PMAA 

References

  1. 1.
    Viculis LM, Mack JJ, Mayer OM, Hahn HT, Kaner RB (2005) J Mater Chem 15:974Google Scholar
  2. 2.
    Pramoda KP, Hussain H, Kou HM, Tan HR, He CB (2010) J Polym Sci A 48:4262Google Scholar
  3. 3.
    Fim F, Guterres JM, Basso NRS, Galland GB (2010) J Polym Sci A 48:692Google Scholar
  4. 4.
    Kalaitzidou K, Fukushima H, Drzal LT (2007) Compos Sci Technol 67:2045Google Scholar
  5. 5.
    Wang L, Hong J, Chen G (2010) Polym Eng Sci 50:2176Google Scholar
  6. 6.
    Li J, Kim JK, Sham ML (2005) Scripta Mater 53:235Google Scholar
  7. 7.
    Gupta S, Mantena PR, Al-Ostaz A (2010) J Reinf Plast Compos 29:2037Google Scholar
  8. 8.
    Cho D, Lee S, Yang G, Fukushima H, Drzal LT (2005) Macromol Mater Eng 290:179Google Scholar
  9. 9.
    Li YC, Tjong SC, Li RKY (2010) Synth Met 160:1912Google Scholar
  10. 10.
    Hu H, Chen G (2010) Polym Compos 31:1770Google Scholar
  11. 11.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) Compos Sci Technol 67:1709Google Scholar
  12. 12.
    Tang QY, Chan YC, Wong NB, Cheung R (2010) Polym Int 59:1240Google Scholar
  13. 13.
    Lu MD, Yang SM (2005) Synth Met 154:73Google Scholar
  14. 14.
    Peng H (2008) J Am Chem Soc 130:42Google Scholar
  15. 15.
    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiul I (2005) Mater Sci Eng A 393:1Google Scholar
  16. 16.
    Kalaitzidou K, Fukushima H, Drzal LT (2007) Carbon 45:1446Google Scholar
  17. 17.
    Yakovlev AV, Finaenov AI, Zabud’kov SL, Yakoleva EV (2006) Russ J Appl Chem 79:1741Google Scholar
  18. 18.
    Li J, Lin H, Zhao W, Chen G (2008) J Appl Polym Sci 109:1377Google Scholar
  19. 19.
    Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Biomacromolecules 11:2345Google Scholar
  20. 20.
    Ramanathan T, Stankovich S, Dikin DA, Liu H, Shen H, Nguyen ST, Brinson LC (2007) J Polym Sci B 45:2097Google Scholar
  21. 21.
    Park S, Ruoff RS (2009) Nat Nanotechnol 4:217Google Scholar
  22. 22.
    See CH, Harries AT (2007) Ind Eng Chem Res 46:997Google Scholar
  23. 23.
    Nozaki T, Okazaki K (2008) Plasma Process Polym 5:300Google Scholar
  24. 24.
    Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Appl Phys A 72:573Google Scholar
  25. 25.
    Zhan Y, Lei Y, Meng F, Zhong J, Zhao R, Liu X (2011) J Mater Sci 46:824. doi: https://doi.org/10.1007/s10853-010-4823-7 Google Scholar
  26. 26.
    Wu X, Qi S, He J, Duan G (2010) J Mater Sci 45:483. doi: https://doi.org/10.1007/s10853-009-3965-y Google Scholar
  27. 27.
    George JJ, Bhowmick AK (2008) J Mater Sci 43:702. doi: https://doi.org/10.1007/s10853-007-2193-6 Google Scholar
  28. 28.
    Lu W, Wu D, Wu C, Chen G (2006) J Mater Sci 41:1785. doi: https://doi.org/10.1007/s10853-006-3946-3 Google Scholar
  29. 29.
    Jang BZ, Zhamu A (2008) J Mater Sci 43:5092. doi: https://doi.org/10.1007/s10853-008-2755-2 Google Scholar
  30. 30.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666Google Scholar
  31. 31.
    Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515Google Scholar
  32. 32.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SY, Ruoff RS (2007) Carbon 45:1558Google Scholar
  33. 33.
    Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) Nano Lett 7:3394Google Scholar
  34. 34.
    McAllister MJ, Li JL, Adamson DH, Schiepp HC, Abdala AA, Jun L, Herrera-Alonso M, Milius DL, Car R, Prudhomme RK, Aksay IA (2007) Chem Mater 19:4396Google Scholar
  35. 35.
    Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Goleman JN (2009) J Am Chem Soc 131:3611Google Scholar
  36. 36.
    Bhaviripudi S, Jia XT, Dresselhaus MS, Kong J (2010) Nano Lett 10:4128Google Scholar
  37. 37.
    Yu C, Li B (2008) Polym Compos 29:998Google Scholar
  38. 38.
    Du XS, Xiao M, Meng YZ, Hay AS (2004) Polym Adv Technol 15:320Google Scholar
  39. 39.
    Yang J, Ming T, Jia QX, Shi JH, Zhang LQ, Lim SH, Yu ZZ, Mai YW (2007) Acta Mater 55:6372Google Scholar
  40. 40.
    Mack JJ, Viculis LM, Ali Ashraf, Luoh R, Yang G, Hahn HT, Ko FK, Kaner RB (2005) Adv Mater 17:77Google Scholar
  41. 41.
    Hussain F, Hojjati M, Okamato M, Gorga RE (2006) J Compos Mater 40:1511Google Scholar
  42. 42.
    Wang WP, Liu Y, Li XX, You YZ (2006) J Appl Polym Sci 100:1427Google Scholar
  43. 43.
    Lu J, Drzal LT, Worden RM, Lee I (2007) Chem Mater 19:6240Google Scholar
  44. 44.
    George JJ, Bandyopadhyay A, Bhowmick AK (2008) J Appl Polym Sci 108:1603Google Scholar
  45. 45.
    Chen L, Lu L, Wu D, Chen G (2007) Polym Compos 28:493Google Scholar
  46. 46.
    Wu TL, Lo TS, Kuo WS (2010) Polym Compos 31:292Google Scholar
  47. 47.
    Zhao W, Wang H, Tang H, Chen G (2006) Polymer 47:8401Google Scholar
  48. 48.
    Yasmin A, Luo JJ, Daniel IM (2006) Compos Sci Technol 66:1182Google Scholar
  49. 49.
    Kim H, Macosko CW (2008) Macromolecules 41:3317Google Scholar
  50. 50.
    Planes E, Duchet J, Maazouz A, Gerard JF (2008) Polym Eng Sci 48:723Google Scholar
  51. 51.
    Katbab AA, Hrymak AN, Kasmadjian K (2008) J Appl Polym Sci 107:3425Google Scholar
  52. 52.
    Gopakumar TG, Pagé DJYS (2004) Polym Eng Sci 44:1162Google Scholar
  53. 53.
    Kim H, Macosko CW (2009) Polymer 50:3797Google Scholar
  54. 54.
    Li YC, Chen GH (2007) Polym Eng Sci 47:882Google Scholar
  55. 55.
    Chen G, Chen X, Wang H, Wu D (2007) J Appl Polym Sci 103:3470Google Scholar
  56. 56.
    Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torklson JM (2008) Macromolecules 41:1905Google Scholar
  57. 57.
    Furgiuele N, Lebovitz AH, Khait K, Torkelson JM (2000) Macromolecules 33:225Google Scholar
  58. 58.
    Pujari S, Ramanathan T, Kasimatic K, Masuda J, Adnrews R, Torkelson JM, Brinson LC, Burghardt WR (2009) J Polym Sci B 47:1426Google Scholar
  59. 59.
    Wakabayashi K, Brunner PJ, Masuda J, Hewlett SA, Torkelson JM (2010) Polymer 51:5525Google Scholar
  60. 60.
    She Y, Chen G, Wu D (2007) Polym Int 56:679Google Scholar
  61. 61.
    Du XS, Xiao M, Meng YZ, Hay AS (2004) Synth Met 143:129Google Scholar
  62. 62.
    Ghose S, Working DC, Connell JW, Smith JG Jr, Watson KA, Delozier DM, Sun YP, Lin Y (2006) High Perform Polym 18:961Google Scholar
  63. 63.
    Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) J Rheol 51:429Google Scholar
  64. 64.
    Li J, Sham LS, Kim JK, Marom G (2007) Compos Sci Technol 67:296Google Scholar
  65. 65.
    Kim S, Do I, Drzal LT (2010) Polym Compos 31:755Google Scholar
  66. 66.
    Sridhar V, Xu D, Pham TT, Mahapatra SP, Kim JK (2009) Polym Compos 30:334Google Scholar
  67. 67.
    Xu D, Sridhar V, Pham TT, Kim JK (2008) E-polymer 23:1Google Scholar
  68. 68.
    Jana S, Zhong WH (2009) Mater Sci Eng A 525:138Google Scholar
  69. 69.
    Min C, Yu D (2010) Polym Eng Sci 50:1734Google Scholar
  70. 70.
    Sridhar V, Chaudhary RNP, Tripathy DK (2006) J Appl Polym Sci 100:3161Google Scholar
  71. 71.
    Kalaitzidou K, Fukushima H, Miyagawa H, Drzal LT (2007) Polym Eng Sci 47:1796Google Scholar
  72. 72.
    Kim S, Seo J, Drzal LT (2010) Composites A 41:581Google Scholar
  73. 73.
    Jiang X, Drzal LT (2010) Polym Compos 31:1091Google Scholar
  74. 74.
    Li J, Vaisman L, Marom G, Kim JK (2007) Carbon 45:744Google Scholar
  75. 75.
    Chen D, Yang J, Chen G (2010) Compos : Part A 41:1636Google Scholar
  76. 76.
    Kim IH, Jeong YG (2010) J Polym Sci B 48:850Google Scholar
  77. 77.
    Wang L, Chen G (2010) J Appl Polym Sci 116:2029Google Scholar
  78. 78.
    Kim S, Do I, Drzal (2009) Macromol Mater Eng 294:196Google Scholar
  79. 79.
    Kai W, Hirota Y, Hua L, Inoue Y (2008) J Appl Polym Sci 107:1395Google Scholar
  80. 80.
    Knauert ST, Douglas JF, Starr FW (2007) J Polym Sci B 45:1882Google Scholar
  81. 81.
    Lee SE, Choi O, Hahn HT (2008) J Appl Phys 104:033705Google Scholar
  82. 82.
    Wang WP, Pan CY (2004) Polym Eng Sci 44:2335Google Scholar
  83. 83.
    Green M, Maron G, Li J, Kim JK (2008) Macromol Rapid Commun 29:1254Google Scholar
  84. 84.
    Srivastava NK, Mehra RM (2008) J Appl Polym Sci 109:3991Google Scholar
  85. 85.
    Weng W, Chen G, Wu D, Chen X, Lu J, Wang P (2004) J Polym Sci B 42:2844Google Scholar
  86. 86.
    Du XS, Xiao M, Meng YZ, Hay AS (2004) Polymer 45:6713Google Scholar
  87. 87.
    Du X, Xiao M, Meng YZ (2004) Eur Polym J 40:1489Google Scholar
  88. 88.
    Al-Saleh MH, Sundararaj U (2009) Carbon 47:2Google Scholar
  89. 89.
    Zheng C, Fan Z, Wei T, Luo G (2009) J Appl Polym Sci 113:1515Google Scholar
  90. 90.
    Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) J Mater Sci 43:2895. doi: https://doi.org/10.1007/s10853-007-1876-3 Google Scholar
  91. 91.
    Mo Z, Shi H, Chen H, Niu H, Zhao Z, Wu Y (2009) J Appl Polym Sci 112:573Google Scholar
  92. 92.
    Lin W, Xi X, Yu C (2009) Synth Met 159:619Google Scholar
  93. 93.
    Tang Q, Wu J, Li Q, Lin J (2008) Polymer 49:5329Google Scholar
  94. 94.
    Lu J, Chen X, Lu W, Chen G (2006) Eur Polym J 42:1015Google Scholar
  95. 95.
    Lu J, Weng W, Chen X, Wu D, Wu C, Chen G (2005) Adv Funct Mater 15:1358Google Scholar
  96. 96.
    Li L, Luo Y, Li Z (2007) Smart Mater Struct 16:1570Google Scholar
  97. 97.
    Fuan He, Lau S, Chan HL, Fan JT (2009) Adv Mater 21:710Google Scholar
  98. 98.
    Shen Y, Li Y, Li M, Nan CW (2007) Adv Mater 19:1418Google Scholar
  99. 99.
    Shen Y, Lin Y, Nan CW (2007) Adv Mater 17:2405Google Scholar
  100. 100.
    Yang C, Lin Y, Nan CW (2009) Carbon 47:1096Google Scholar
  101. 101.
    Sun LL, Li B, Mitchell G, Zhong WH (2010) Nanotechnology 10:305702Google Scholar
  102. 102.
    Wong SC, Wouterson EM, Sutherland EM (2006) J Vinyl Addit Technol 12:127Google Scholar
  103. 103.
    Causin V, Marega C, Marigo A, Ferrara G, Ferraro A (2006) Eur Polym J 42:3153Google Scholar
  104. 104.
    Sun X, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2010) J Phys Condens Matter 22:334216Google Scholar
  105. 105.
    Hung MT, Choi O, Ju YS, Hahn HT (2006) Appl Phys Lett 89:023117Google Scholar
  106. 106.
    Uhi FM, Yao Q, Wilkie CA (2005) Polym Adv Technol 16:533Google Scholar
  107. 107.
    Fan Z, Zheng C, Wei T, Zhang Y, Luo G (2009) Polym Eng Sci 49:2041Google Scholar
  108. 108.
    Wei T, Song L, Zheng C, Wang K, Yan J, Shao B, Fan Z (2010) Mater Lett 64:2376Google Scholar
  109. 109.
    Li J, Wong PS, Kim JK (2008) Mater Sci Eng A 483–484:660Google Scholar
  110. 110.
    Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A, Maguire RG, Zhong WH (2010) Nanotechnology 21:105702Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations