Advertisement

Journal of Materials Science

, Volume 46, Issue 18, pp 6075–6086 | Cite as

Morphological, thermal, rheological, and mechanical properties of polypropylene-nanoclay composites prepared from masterbatch in a twin screw extruder

  • Achmad Chafidz
  • Mohammad Al-haj Ali
  • Rabeh ElleithyEmail author
Article

Abstract

A commercial homopolymer polypropylene was melt blended with commercial nanoclay masterbatch at different concentrations of nanoclay using twin screw extruder (TSE). The influence of three different concentrations (5, 10, and 15 wt%) of the nanoclay on the morphological, thermal, rheological, and mechanical properties was investigated. The morphology of the nanocomposites was characterized using Scanning Electron Microscope (SEM), whereas, the thermal behavior (e.g., melting and crystallization) was characterized using Differential Scanning Calorimetry (DSC). The melt rheology and dynamic mechanical properties were analyzed using a torsional rheometer. Additionally, the tensile properties were characterized as well. The morphological analysis showed that the nanoclay was well distributed in the PP matrix as indicated by the SEM micrographs. The DSC results showed that the presence of nanoclay in the PP matrix increased the degree of crystallinity of PP-nanoclay composites, which reached a maximum at 5 wt% of nanoclay concentration. However, the melting temperature of the PP-nanoclay composites was not affected by the presence of nanoclay particles. In addition, rheological analysis showed that the melt response gradually changed from pseudo-liquid like to pseudo-solid like as the nanoclay concentration increased. Moreover, the storage modulus (G′) increased by increasing nanoclay content. Furthermore, tensile test results showed that the addition of nanoclay leads to a significant enhancement in the mechanical properties of the PP nanocomposites.

Keywords

Differential Scanning Calorimeter Storage Modulus Injection Molding Polymer Nanocomposites Twin Screw Extruder 

Notes

Acknowledgements

The authors are grateful to SABIC Polymer Research Center (SPRC) at King Saud University for allowing us to use their equipments and to the Engineering Research Center for their financial support. We would also like to thank the Deanship of Scientific Research and Research Center-College of Engineering at King Saud University.

References

  1. 1.
    Alexandre M, Dubois P (2000) Mater Sci Eng 28(1–2):1CrossRefGoogle Scholar
  2. 2.
    Fischer H (2003) Mater Sci Eng 23(6–8):763CrossRefGoogle Scholar
  3. 3.
    Modesti M, Lorenzetti A, Bon D, Besco S (2005) Polymer 46(23):10237CrossRefGoogle Scholar
  4. 4.
    Lei SG, Hoa SV, Ton-That MT (2006) Compos Sci Technol 66(10):1274CrossRefGoogle Scholar
  5. 5.
    Kannan M, Bhagawan SS, Jose T (2010) J Mater Sci 45:1078. doi: https://doi.org/10.1007/s10853-009-4046-y CrossRefGoogle Scholar
  6. 6.
    Nath DC, Bandyopadhyay S, Yu A, Zeng Q, Das T, Blackburn D, White C (2009) J Mater Sci 44:6078. doi: https://doi.org/10.1007/s10973-009-0408-6 CrossRefGoogle Scholar
  7. 7.
    Ganguly A, Bhowmick A (2009) J Mater Sci 44:903. doi: https://doi.org/10.1007/s10853-008-3183-z CrossRefGoogle Scholar
  8. 8.
    Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci 31(10):2493CrossRefGoogle Scholar
  9. 9.
    Messersmith PB, Giannelis EP (1995) J Polym Sci 33(7):1047CrossRefGoogle Scholar
  10. 10.
    Gilman JW, Kashiwagi T, Brown JET, Lomakin SP (1998) In: Proceeding of 43rd international SAMPE symposium and exhibition—materials and process affordability keys to the future, Book1, vol 43, 31 May–4 June 1998, Anaheim, CAGoogle Scholar
  11. 11.
    Gilman JW (1999) Appl Clay Sci 15(1–2):31CrossRefGoogle Scholar
  12. 12.
    Gilman JW, Jackson CL, Morgan AB, Harris R Jr (2000) Chem Mater 12(7):1866CrossRefGoogle Scholar
  13. 13.
    Kashiwagi T, Du F, Douglas JF, Karen IW, Harris R Jr, Shields JR (2005) Nat Mater 4(12):928CrossRefGoogle Scholar
  14. 14.
    Mai YW, Yu ZZ (2006) Polymer nanocomposites. Woodhead Publishing Ltd., CambridgeCrossRefGoogle Scholar
  15. 15.
    Yuan Q, Awate S, Misra RDK (2006) Eur Polym J 42(9):1994CrossRefGoogle Scholar
  16. 16.
    Yuan Q, Misra RDK (2006) Polymer 47(12):4421CrossRefGoogle Scholar
  17. 17.
    Modesti M, Lorenzetti A, Bon D, Besco S (2006) Polym Degrad Stab 91(4):672CrossRefGoogle Scholar
  18. 18.
    Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67(1):87CrossRefGoogle Scholar
  19. 19.
    Lertwimolnun W, Vergnes B (2005) Polymer 46(10):3462CrossRefGoogle Scholar
  20. 20.
    Rohlmann CO, Failla MD, Quinzani LM (2006) Polymer 47(22):7795CrossRefGoogle Scholar
  21. 21.
    Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Polymer 48(18):5308CrossRefGoogle Scholar
  22. 22.
    Koo CM, Kim MJ, Choi MH, Kim SO, Cheung IJ (2003) J Appl Polym Sci 88(6):1526CrossRefGoogle Scholar
  23. 23.
    Sharma SK, Nayak SK (2009) Polym Degrad Stab 94(1):132CrossRefGoogle Scholar
  24. 24.
    Boucard S, Duchet J, Gerard JF, Prele P, Gonzales S (2003) Macromol Symp 194(1):241CrossRefGoogle Scholar
  25. 25.
    Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2008) Compos Sci Technol 69(11–12):1756Google Scholar
  26. 26.
    Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastic: theory and practice. Carl Hanser Verlag, MunichCrossRefGoogle Scholar
  27. 27.
    Kim HB, Choi JS, Lee CH, Lim ST, Jhon MS, Choi HJ (2005) Eur Polym J 41(4):679CrossRefGoogle Scholar
  28. 28.
    Lim YT, Park OO (2001) Rheol Acta 40(3):220CrossRefGoogle Scholar
  29. 29.
    Zhou Y, Rangari V, Mahfuz H, Jeelani S, Mallick PK (2005) Mater Sci Eng 402(1–2):109CrossRefGoogle Scholar
  30. 30.
    Kontou E, Niaounakis M (2006) Polymer 47(4):1267CrossRefGoogle Scholar
  31. 31.
    Ma J, Zhang S, Qi Z, Li G, Hu Y (2002) J Appl Polym Sci 83(9):1978CrossRefGoogle Scholar
  32. 32.
    Xu Y, Shang S, Huang J (2010) Polym Test 29:1007–1013CrossRefGoogle Scholar
  33. 33.
    Kodgire P, Kalgaonkar R, Hambir S, Bulakh N, Jog JP (2001) J Appl Polym Sci 81(7):1786CrossRefGoogle Scholar
  34. 34.
    Ferry JD (1980) Viscoelastic properties of polymer. Wiley, New York, p 358Google Scholar
  35. 35.
    Ren J, Silva AS, Krishnamoorti R (2000) Macromolecules 33(10):3739CrossRefGoogle Scholar
  36. 36.
    Ray SS (2006) J Ind Eng Chem 12(6):811Google Scholar
  37. 37.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28(11):1539CrossRefGoogle Scholar
  38. 38.
    Ray SS, Okamoto M (2003) Macromol Mater Eng 288(12):936CrossRefGoogle Scholar
  39. 39.
    Nwabunma D, Kyu T (2008) Polyolefin composites. Wiley-Interscience, New JerseyGoogle Scholar
  40. 40.
    Hasegawa N, Okamoto H, Kato M, Usuki A (2000) J Appl Polym Sci 78(11):1918CrossRefGoogle Scholar
  41. 41.
    Kim JH, Koo CM, Choi YS, Wang KH, Chuung IJ (2004) Polymer 45:7719CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Achmad Chafidz
    • 1
  • Mohammad Al-haj Ali
    • 1
  • Rabeh Elleithy
    • 2
    Email author
  1. 1.Department of Chemical EngineeringKing Saud UniversityRiyadhSaudi Arabia
  2. 2.SABIC Polymer Research CenterKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations