Journal of Materials Science

, Volume 46, Issue 18, pp 6054–6064 | Cite as

Mesoscopic nonequilibrium thermodynamics treatment of the grain boundary thermal grooving induced by the anisotropic surface drift diffusion

  • Oncu Akyildiz
  • Ersin Emre Oren
  • Tarik Omer Ogurtani
Article

Abstract

A systematic study based on the self-consistent dynamical simulations is presented for the grain boundary thermal grooving problem by strictly following the irreversible thermodynamic theory of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)]. This approach furnishes us to have auto-control on the otherwise free-motion of the grain boundary triple junction without presuming any equilibrium dihedral (wetting) angles at the edges. The effects of physicochemical properties and the anisotropic surface diffusivity on the transient grooving behavior, which takes place at the early stage of the scenario, were considered. We analyzed the experimental thermal grooving data reported for tungsten in the literature, and compared them with the carried simulation results. This investigation showed that the observed changes in the dihedral angles are strictly connected to the transient behavior of the simulated global system, and manifest themselves at the early stage of the thermal grooving phenomenon.

Abbreviations

GB

Grain boundary

TJ

Triple junction

AFM

Atomic force microscopy

WP

Wetting parameter

BC

Boundary conditions

References

  1. 1.
    Tritscher P, Broadbridge P (1995) Proc R Soc Lond A 450:569CrossRefGoogle Scholar
  2. 2.
    Mullins WW (1957) J Appl Phys 28:333CrossRefGoogle Scholar
  3. 3.
    Gibbs W (1948) Thermodynamics, vol I. Yale University Press, New HavenGoogle Scholar
  4. 4.
    Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, MassachusettsGoogle Scholar
  5. 5.
    Young T (1805) Philos Trans R Soc Lond 95:65CrossRefGoogle Scholar
  6. 6.
    Rabkin E, Klinger L, Semenov V (2000) Acta Mater 48:1533CrossRefGoogle Scholar
  7. 7.
    Klinger L, Rabkin E (2001) Interface Sci 9:55CrossRefGoogle Scholar
  8. 8.
    Xin T, Wong H (2003) Acta Mater 51:2305CrossRefGoogle Scholar
  9. 9.
    Zhang W, Sachenko PP, Gladwell I (2004) Acta Mater 52:107CrossRefGoogle Scholar
  10. 10.
    Klinger LM, Chu X, Mullins WW, Bauer CL (1996) J Appl Phys 80:6670CrossRefGoogle Scholar
  11. 11.
    Nathan M, Glickman EE, Khenner M, Averbuch A, Israeli M (2000) Appl Phys Lett 77:3355CrossRefGoogle Scholar
  12. 12.
    Khenner M, Averbuch A, Israeli M, Nathan M, Glickman EE (2001) Comput Mater Sci 20:235CrossRefGoogle Scholar
  13. 13.
    Liu CY, Lee S, Chuang TJ (2001) Mater Sci Eng B Solid 86:101CrossRefGoogle Scholar
  14. 14.
    Wang WL, Lee S, Chuang TJ (2002) Philos Mag A 82:955CrossRefGoogle Scholar
  15. 15.
    Chuang TJ, Rice JR (1973) Acta Metall 21:1625CrossRefGoogle Scholar
  16. 16.
    Pharr G, Nix WD (1979) Acta Metall 27:1615CrossRefGoogle Scholar
  17. 17.
    Martinez L, Nix WD (1982) Metall Trans A 13:427CrossRefGoogle Scholar
  18. 18.
    Igic P, Mawby PA (1999) Solid State Electron 43:255CrossRefGoogle Scholar
  19. 19.
    Ogurtani TO (2006) J Chem Phys 124:144706CrossRefGoogle Scholar
  20. 20.
    Ogurtani TO, Oren EE (2005) Int J Solids Struct 42:3918CrossRefGoogle Scholar
  21. 21.
    Ogurtani TO (2006) Phys Rev B 73:235408CrossRefGoogle Scholar
  22. 22.
    Oren EE, Ogurtani TO (2002) In: Ozkan CS, Cammaratai RC, Freund LB, Gao H (eds) Thin films: stresses and mechanical properties IX, MRS symposia proceedings No. 695. Materials Research Society, PittsburghGoogle Scholar
  23. 23.
    Ogurtani TO, Akyildiz O (2005) J Appl Phys 97:093520CrossRefGoogle Scholar
  24. 24.
    Ogurtani TO, Akyildiz O, Oren EE (2008) J Appl Phys 104(1):013518CrossRefGoogle Scholar
  25. 25.
    Ogurtani TO, Akyildiz O (2008) Int J Solids Struct 45:921CrossRefGoogle Scholar
  26. 26.
    Zhang W, Sachenko PP, Schneibel JH (2002) J Mater Res 17:1495CrossRefGoogle Scholar
  27. 27.
    Yeremin EN (1979) The foundations of chemical kinetics. MIR Publishers, MoscowGoogle Scholar
  28. 28.
    Ramasubramaniam A, Shenoy VB (2005) Acta Mater 53:2943CrossRefGoogle Scholar
  29. 29.
    Shewmon PG (1966) In: Margolin H (ed) Recrystallization, grain growth and textures. American Society for Metals, Metals Park, OhioGoogle Scholar
  30. 30.
    Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New YorkGoogle Scholar
  31. 31.
    Smith U, Kristensen N, Ericson F, Schweitz J (1991) J Vac Sci Technol A 9:2527CrossRefGoogle Scholar
  32. 32.
    Chen N, Li Z, Wang H, Sun J (2007) J Appl Phys 101:033535CrossRefGoogle Scholar
  33. 33.
    Ogurtani TO (2009) J Cryst Growth 311:1584CrossRefGoogle Scholar
  34. 34.
    Gao H (1991) Int J Solids Struct 28:703CrossRefGoogle Scholar
  35. 35.
    Binh V, Chaudier M, Couturier J, Uzan R, Drechsler M (1976) Surf Sci 57:184CrossRefGoogle Scholar
  36. 36.
    Robertson WM (1971) J Appl Phys 42:463CrossRefGoogle Scholar
  37. 37.
    Zhang W, Schneibel JH (1995) Comput Mater Sci 3:347CrossRefGoogle Scholar
  38. 38.
    Sachenko PP, Schneibel JH, Swadener JG, Zhang W (2000) Philos Mag Lett 80:627CrossRefGoogle Scholar
  39. 39.
    Gjostein NA (1963) In: Robertson WD, Gjostein NA (eds) Metal surfaces: structure, energetics and kinetics. American Society for Metals, Metals Park, OhioGoogle Scholar
  40. 40.
    Ogurtani TO (2007) J Appl Phys 102:063517CrossRefGoogle Scholar
  41. 41.
    Prigogine I (1961) Thermodynamics of irreversible processes. Interscience Publisher, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Oncu Akyildiz
    • 1
  • Ersin Emre Oren
    • 2
  • Tarik Omer Ogurtani
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Biomedical EngineeringTOBB University of Economics and TechnologyAnkaraTurkey

Personalised recommendations