Journal of Materials Science

, Volume 46, Issue 18, pp 6046–6053 | Cite as

Electrodeposition of thin films and nanowires Ni–Fe alloys, study of their magnetic susceptibility

  • Céline RousseEmail author
  • Patrick Fricoteaux


Electrodeposition of thin films and nanowires Ni–Fe alloys is presented. For the thin films, we have studied the impact of various electrolytic conditions (magnetic induction, pH, and substrate) on the composition and magnetic susceptibility. Whatever the electrolytic conditions, the evolution of the composition versus the polarization exhibited first a decrease of the Ni content within the deposit followed by an increase. However, at constant polarization, the obtained values were different. Concerning the evolution of the magnetic susceptibility versus the composition, it is known that it decreases with the enhancement of the Ni percentage. The reason is that the susceptibility of iron is higher than that of Ni. It can also observe a sharp rupture in the evolution of magnetic susceptibility, which appeared near the Invar composition (Ni36Fe64). Our results show that the electrolytic conditions do not affect the position of the rupture point for the thin films but modify the susceptibility values. For the nanowires, a polycarbonate membrane has been used as a template. The structural characteristics of wires were examined using X-ray diffraction. According to the composition and as described in the literature for the electrodeposited thin films, a change between the body-centered cubic structure and face-centered cubic structure was obtained for the nanowires. However, for the nanowires this modification appeared for a lower Ni content than for this in thin films. Finally, a comparison of their magnetic susceptibility with thin films exhibited a shift toward the lower Ni contents for the rupture point.


Magnetic Susceptibility Nickel Content Polycarbonate Membrane Electrolytic Condition Constant Polarization 


  1. 1.
    Wiess RJ (1963) Proc Phys Soc 82:281CrossRefGoogle Scholar
  2. 2.
    Kondorsky EI, Sedov VL (1960) J Appl Phys 31:331SCrossRefGoogle Scholar
  3. 3.
    Crangle J, Hallam GG (1963) Proc R Soc Lond 272:119CrossRefGoogle Scholar
  4. 4.
    Kouvel JS, Wilson RH (1961) J Appl Phys 32:435CrossRefGoogle Scholar
  5. 5.
    Ueda Y, Takahashi M (1980) J Phys Soc Jpn 49:477CrossRefGoogle Scholar
  6. 6.
    Brenner A (1963) Electrodeposition of alloys, vol 2. Academic Press Inc, New YorkGoogle Scholar
  7. 7.
    Matlosz M (1993) J Electrochem Soc 140:2272CrossRefGoogle Scholar
  8. 8.
    Zech N, Podlaha EJ, Landolt D (1999) J Electrochem Soc 146:2886CrossRefGoogle Scholar
  9. 9.
    Krause T, Arulnayagam L, Pritzker M (1997) J Electrochem Soc 144:960CrossRefGoogle Scholar
  10. 10.
    Afshar A, Dolati AG, Ghorbani M (2003) Mater Chem Phys 77:352CrossRefGoogle Scholar
  11. 11.
    Vaes J, Fransaer J, Celis JP (2000) J Electrochem Soc 147:3718CrossRefGoogle Scholar
  12. 12.
    Lachenwitzer A, Magnussen OM (2000) J Phys Chem B 104:7424CrossRefGoogle Scholar
  13. 13.
    Andricacos PC, Arana C, Tabib J, Dukovic J, Romankiw LT (1989) J Electrochem Soc 136:1336CrossRefGoogle Scholar
  14. 14.
    Karthik R, Raja RJ, Ramasamy M, Sheela G, Madhu S, Kennedy S, Ramakishan Rao CH, Pushpavanam M (2003) Trans Inst Met Finish 81:68CrossRefGoogle Scholar
  15. 15.
    Grimmett DL, Schwartz M, Nobe K (1998) Plat Surf Finish 75:94Google Scholar
  16. 16.
    Ramachandran A, Tharamani CN, Mayanna SM (2001) Trans Inst Met Finish 79:195CrossRefGoogle Scholar
  17. 17.
    Ebrahimi F, Ahmed Z (2003) J Appl Electrochem 33:733CrossRefGoogle Scholar
  18. 18.
    Msellak K, Chopart JP, Jbara O, Aaboubi O, Amblard J (2004) J Magn Magn Mater 281:295CrossRefGoogle Scholar
  19. 19.
    Tabakovic I, Riemer S, Vas’Ko V, Sapozhnikov V, Kief M (2003) J Electrochem Soc 150:C635CrossRefGoogle Scholar
  20. 20.
    Rousse C, Msellak K, Fricoteaux P, Merienne E, Chopart JP (2006) Magnetohydrodynamics 42:371Google Scholar
  21. 21.
    Fricoteaux P, Rousse C (2008) J Electroanal Chem 612:9CrossRefGoogle Scholar
  22. 22.
    Cheung C, Djuanda F, Erb U, Palumbo G (1995) Nanostruct Mater 5:513CrossRefGoogle Scholar
  23. 23.
    Ebrahimi F, Li H (2003) Rev Adv Mater Sci 5:134Google Scholar
  24. 24.
    Li H, Ebrahimi F (2003) Mat Sci Eng A347:93CrossRefGoogle Scholar
  25. 25.
    Li H, Ebrahimi F, Choo H, Liaw Peter K (2006) J Mater Sci 41:7636. doi: CrossRefGoogle Scholar
  26. 26.
    Lewis DB, Lehmberg CE, Marshall GW (2001) Trans IMF 79:175CrossRefGoogle Scholar
  27. 27.
    Sellmyer DJ, Zheng M, Skomski R (2001) J Phys Condens Matter 13:R443CrossRefGoogle Scholar
  28. 28.
    MCGary PD, Tan L, Zou J, Stadler BJH, Downey PR, Flatau AB (2006) J Appl Phys 99:08B310CrossRefGoogle Scholar
  29. 29.
    Yun M, Myuna NV, Vasquez RP, Wang J, Monbouquette H (2003) Nanofabr Technol Proc SPIE 5220:37CrossRefGoogle Scholar
  30. 30.
    Blondel A, Meier JP, Doudin B, Ansermet JPh (1994) Appl Phys Lett 65:3019CrossRefGoogle Scholar
  31. 31.
    Chou S, Wei M, Krauss PR, Fischer PB (1994) J Vac Sci Technol B12:3695CrossRefGoogle Scholar
  32. 32.
    Fert A, Piraux L (1999) J Magn Magn Mater 200:338CrossRefGoogle Scholar
  33. 33.
    Ozin GA (1992) Adv Mater 4:612CrossRefGoogle Scholar
  34. 34.
    Martin CR (1994) Science 266:1961CrossRefGoogle Scholar
  35. 35.
    Sugawara A, Streblechenko D, McCartney M, Scheinfein MR (1998) IEEE Trans Magn 34:1081CrossRefGoogle Scholar
  36. 36.
    Aravamudhan S, Singleton J, Goddard PA, Bhansali S (2009) J Phys D Appl Phys 42:115008CrossRefGoogle Scholar
  37. 37.
    Roy E, Fricoteaux P, Yu-Zang K (2001) J Nanosci Nanotechnol 1:1CrossRefGoogle Scholar
  38. 38.
    Motoyama M, Fukunaka Y, Sakka T, Ogata YH, Kikuchi S (2005) J Electroanal Chem 584:84CrossRefGoogle Scholar
  39. 39.
    Grimmett DL, Schwartz M, Nobe K (1990) J Electrochem Soc 11:3414CrossRefGoogle Scholar
  40. 40.
    Leith SD, Ramli S, Schwartz DT (1999) J Electrochem Soc 146:1431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LACM-DTI LRC-CEA 0534/EA4302, UFR Sciences Exactes et NaturellesReims Cedex 02France

Personalised recommendations