Journal of Materials Science

, Volume 46, Issue 18, pp 6029–6045 | Cite as

Preparation and characterisation of cellulose nanofibres

  • E. H. Qua
  • P. R. HornsbyEmail author
  • H. S. S. Sharma
  • G. Lyons


Two different procedures were compared for the preparation of cellulose nanofibres from flax and microcrystalline cellulose (MCC). The first involved a combination of high energy ball milling, acid hydrolysis and ultrasound, whilst the second employed a high pressure homogenisation technique, with and without various pre-treatments of the fibrous feedstock. The geometry and microstructure of the cellulose nanofibres were observed by SEM and TEM and their particle size measured using image analysis and dynamic light scattering. Aspect ratios of nanofibres made by microfluidisation were orders of magnitude greater than those achieved by acid hydrolysis. FTIR, XRD and TGA were used to characterise changes to chemical functionality, cellulose crystallinity and thermal stability resulting from the approaches used for preparing the cellulose nanofibres. Hydrolysis using sulphuric acid gave rise to esterification of the cellulose nanofibres, a decrease in crystallinity with MCC, but an increase with flax, together with an overall reduction in thermal stability. Increased shear history of flax subjected to multiple passes through the microfluidiser, raised both cellulose nanofibril crystallinity and thermal stability, the latter being strongly influenced by acid, alkaline and, most markedly, silane pretreatment.


Cellulose Lignin Fibril Hemicellulose Acid Hydrolysis 


  1. 1.
    Eichhorn SJ et al (2010) J Mater Sci 45:1. doi: CrossRefGoogle Scholar
  2. 2.
    Oksman K, Mathew AP, Sain M (2009) Plast Rubber Compos Macromol Eng 38:396CrossRefGoogle Scholar
  3. 3.
    Habibi Y, Lucia LA, Rojas OJ (2010) ChemRev 110:3479Google Scholar
  4. 4.
    Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) J Appl Polym Sci 113:2238CrossRefGoogle Scholar
  5. 5.
    Qua EH, Hornsby PR (2011) Plast Rubber Compos Macromol Eng (in press)Google Scholar
  6. 6.
    Bhatnagar A, Sain M (2005) J Reinf Plast Compos 24:1259CrossRefGoogle Scholar
  7. 7.
    Wang B, Sain M (2005) In: Oksman K, Sain M (eds) Chapter 13: ACS Symposium Series 938, p 187Google Scholar
  8. 8.
    Mathew AP, Chakraborty A, Oksman K, Sain M (2005) In: Oksman K, Sain M (eds) Chapter 9: ACS Symposium Series 938, p 114Google Scholar
  9. 9.
    Petersson L, Oksman K (2005) In: Oksman K, Sain M (eds) Chapter 10: ACS Symposium Series 938, p 132Google Scholar
  10. 10.
    Zimmermann T, Pöhlere E, Geiger T, Schleuniger J, Schwaller P, Richter IK (2005) In: Chapter 4: ACS Symposium Series 938, p 33Google Scholar
  11. 11.
    Lu YS, Weng LH, Cao XD (2006) Carbohydr Polym 63:198CrossRefGoogle Scholar
  12. 12.
    Noorani S, Simonsen J, Atre S (2005) In: Oksman K, Sain M (eds) Chapter 14: ACS Symposium Series 938, p 209Google Scholar
  13. 13.
    Dinand E, Chanzy H, Vignon MR (1999) Food Hydrocolloids 13:275CrossRefGoogle Scholar
  14. 14.
    Bondeson D, Kvein I, Okman K (2005) In: Oksman K, Sain M (eds) Chapter 2: ACS Symposium Series 938, p 10Google Scholar
  15. 15.
    Tanem BS, Kvein I, Van Helvoort ATJ, Oksman K (2005) In: Oksman K, Sain M (eds) Chapter 5: ACS Symposium Series 938, p 48Google Scholar
  16. 16.
    Marcovich NE, Bellesi NE, Aranguren MI, Auad ML, Nutt SR (2006) J Mater Res 21:870CrossRefGoogle Scholar
  17. 17.
    Petersson L, Kvien I, Oksman K (2007) Compos Sci Technol 67(11–12):2535CrossRefGoogle Scholar
  18. 18.
    Roman M, Winter WT (2004) Biomacromolecules 5:1671CrossRefGoogle Scholar
  19. 19.
    Grunert M, Winter WT (2002) J Polym Environ 10:27CrossRefGoogle Scholar
  20. 20.
    Dufresne A, Cavaille JY, Vignon MR (1997) J Appl Polym Sci 64(6):1185CrossRefGoogle Scholar
  21. 21.
    Heux L, Chauve G, Bonini C (2000) Langmuir 16(21):8210CrossRefGoogle Scholar
  22. 22.
    Habibi Y, Chanzy H, Vignon MR (2006) Cellulose 13:607CrossRefGoogle Scholar
  23. 23.
    Lu Y, Weng L, Cao X (2006) Carbohydr Polym 63:198CrossRefGoogle Scholar
  24. 24.
    Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A 30:75CrossRefGoogle Scholar
  25. 25.
    Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromolecules 6:1048CrossRefGoogle Scholar
  26. 26.
    Ranby BG (1949) Acta Chem Scand 3:649CrossRefGoogle Scholar
  27. 27.
    Ranby BG, Ribi E (1950) Experientia 6:12CrossRefGoogle Scholar
  28. 28.
    Kvein I (2007) Characterization of biopolymer based nanocomposites. Doctor of Philosophy Thesis, Norwegian University of Science and TechnologyGoogle Scholar
  29. 29.
    Dufresne A, Cavaille JY (1999) In: Imam SH, Greene RV (eds) ACS Symposium Series 723, p 39Google Scholar
  30. 30.
    Helbert W, Cavaillé JY, Dufresne A (1996) Polym Compos 17:604CrossRefGoogle Scholar
  31. 31.
    Angles MN, Dufresne A (2000) Macromolecules 33:8344CrossRefGoogle Scholar
  32. 32.
    Morin A, Dufresne A (2002) Macromolecules 35:2190CrossRefGoogle Scholar
  33. 33.
    Dong XM, Revol JF, Gray DG (1998) Cellulose 5:19CrossRefGoogle Scholar
  34. 34.
    Svagan A (2006) Bio-inspired polysaccharide nanocomposites and foams. Doctor of Philosophy Thesis, KTH Chemical Science and Engineering, Department of Fibre and Polymer Technology, Stockholm, SwedenGoogle Scholar
  35. 35.
    Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci 37:815Google Scholar
  36. 36.
    Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) J Appl Polym Sci 37:797Google Scholar
  37. 37.
    Nakagaito AN, Yano H (2005) Appl Phys A 80(1):155CrossRefGoogle Scholar
  38. 38.
    Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Adv Mater 17(2):153CrossRefGoogle Scholar
  39. 39.
    Zimmermann T, Pohler E, Geiger T (2004) Adv Eng Mater 6(9):754CrossRefGoogle Scholar
  40. 40.
    Taniguchi T, Okamura K (1998) Polym Int 47(3):291CrossRefGoogle Scholar
  41. 41.
    Berglund L (2005) In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis Group, CRC Press, Boca Raton, FL, p 808Google Scholar
  42. 42.
    Gassan J, Bledzki AK (1996) Appl Macromol Chem Phys 236:129Google Scholar
  43. 43.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221CrossRefGoogle Scholar
  44. 44.
    Bismarck A, Mishra S, Lampke T (2005) In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca Raton, p 37Google Scholar
  45. 45.
    Kernaghan K, Sharma HSS, Whiteside L (2006) Enzyme Microb Technol 39:1373CrossRefGoogle Scholar
  46. 46.
    Sano N, Naito M, Chhowalla M, Kikuchi T, Matsuda S, Iimura K, Wang H, Kanki T, Amaratunga GAJ (2003) Chem Phys Lett 378(1–2):29CrossRefGoogle Scholar
  47. 47.
    Caulfield DF, Moore WE (1974) Wood Sci 6:375Google Scholar
  48. 48.
    Ganan P, Cruz J, Garbizu S, Arbelaiz A, Mondragon I (2005) Polym Compos 26(2):121CrossRefGoogle Scholar
  49. 49.
    Lee JY, Kim JS, Hyeok AK, Lee K, Kim DY, Bae DJ, Lee YH (2005) J Nanosci Nanotechnol 5(7):1045CrossRefGoogle Scholar
  50. 50.
    Magid L (1996) In: Brown W (ed) Light scattering principles and development. Clarendon Press, OxfordGoogle Scholar
  51. 51.
    Bera D, Johnston G, Heinrich H, Seal S (2006) Nanotechnology 17:1722CrossRefGoogle Scholar
  52. 52.
    Provencher SW (1982) Comput Phys Commun 27:213CrossRefGoogle Scholar
  53. 53.
    Provencher SW (1982) Comput Phys Commun 27:229CrossRefGoogle Scholar
  54. 54.
    Verleye GAL, Roeges NPG, De Moor MO (2001) Easy identification of plastics and rubbers. Rapra Technology Limited, ShawburyGoogle Scholar
  55. 55.
    Paralikar S (2007) Poly(vinyl alcohol)/cellulose nanocomposite barrier films. Master of Science Thesis, Oregon State University, USAGoogle Scholar
  56. 56.
    Neevel JG, Mensch TJC (1999) ICOM Comm Conserv 2:528Google Scholar
  57. 57.
    Panaitescu DM, Donescu D, Bercu C, Vuluga DM, Iorga M, Ghiurea M (2007) Polym Eng Sci 47(8):1228CrossRefGoogle Scholar
  58. 58.
    Tamada Y (2003) J Appl Polym Sci 87:2377CrossRefGoogle Scholar
  59. 59.
    Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Polymer 43:2645CrossRefGoogle Scholar
  60. 60.
    Ganan P, Cruz J, Garbizu S, Arbelaiz A, Mondragon I (2004) J Appl Polym Sci 94:1489CrossRefGoogle Scholar
  61. 61.
    Bisanda ETN, Ansell MP (1991) Compos Sci Technol 41:165CrossRefGoogle Scholar
  62. 62.
    Sreekala MS, Kumaran MG, Thomas S (1997) J Appl Polym Sci 66:821CrossRefGoogle Scholar
  63. 63.
    Rachini A, Le Troedec M, Peyratout C, Smith A (2009) J Appl Polym Sci 112:226CrossRefGoogle Scholar
  64. 64.
    Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini A (2004) Int J Adhes Adhes 24:43CrossRefGoogle Scholar
  65. 65.
    Nisizawa K (1973) J Ferment Technol 51:267Google Scholar
  66. 66.
    Fan LT, Gharpuray MM, Lee YH (1987) In: Biotechnology monographs, vol 3. Springer-Verlag, BerlinGoogle Scholar
  67. 67.
    Teixeira EM, Pasquini D, Curvelo AAS, Corrandini E, Belgacem MN, Dufresne A (2009) Carbohydr Polym 78:422CrossRefGoogle Scholar
  68. 68.
    Kim DY, Nishiyama Y, Wada M, Kuga S (2001) Cellulose 8(1):29CrossRefGoogle Scholar
  69. 69.
    Wang N, Ding E, Cheng R (2007) Polymer 48:3486CrossRefGoogle Scholar
  70. 70.
    Scheirs J, Camino G, Tumiatti W (2001) Eur Polym J 37(5):933CrossRefGoogle Scholar
  71. 71.
    Julien S, Chornet E, Overend RP (1993) J Anal Appl Pyrol 27:25CrossRefGoogle Scholar
  72. 72.
    Sefain MZ, El-Kalyoubi SF, Shukry N (1985) J Polym Sci 23:1569Google Scholar
  73. 73.
    Wielage B, Lampke T, Marx G, Nestler K, Starke D (1999) Thermochim Acta 337:169CrossRefGoogle Scholar
  74. 74.
    Byrne CE, Nagle DC (1997) Carbon 35(2):259CrossRefGoogle Scholar
  75. 75.
    Nair KCM, Thomas S, Groeninckx G (2001) Compos Sci Technol 61:2519CrossRefGoogle Scholar
  76. 76.
    Albano C, González J, Ichazo M, Kaiser D (1999) Polym Degrad Stab 66:179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. H. Qua
    • 1
  • P. R. Hornsby
    • 1
    Email author
  • H. S. S. Sharma
    • 2
  • G. Lyons
    • 2
  1. 1.Polymers Cluster, School of Mechanical and Aerospace EngineeringQueen’s University BelfastBelfastUK
  2. 2.Applied Plant Science DivisionAgri-Food and Bioscience InstituteBelfastUK

Personalised recommendations