Journal of Materials Science

, Volume 46, Issue 18, pp 6018–6028 | Cite as

Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization

  • X. G. FanEmail author
  • H. Yang
  • P. F. Gao


Interrupted compression tests of TA15 titanium alloy with initially equiaxed microstructure were carried out at deformation temperatures between 1173 to 1273 K and strain rates between 0.001 to 0.1 s−1 to investigate the deformation behavior and microstructure evolution under multistage deformation. The TA15 alloy exhibits significant flow softening in both β and (α + β) working. It is found that the flow softening relates to dynamic recrystallization of β phases under current experimental conditions. In multistage β working, metadynamic recrystallization is the main softening mechanism during inter-pass holding. The grain refinement by metadynamic recrystallization leads to the decrease in peak stress upon reloading. In multistage (α + β) working, static recrystallization is the main softening mechanism during inter-pass holding. The static recrystallization kinetics increases with temperature and strain rate. The inter-pass holding has little influence on the morphology of the primary α phases. The β grain size is determined by spacing of primary α phases, which is more affected by working temperature but less dependent on strain rate and inter-pass holding time.


Multistage deformation TA15 titanium alloy Flow stress Microstructure Recrystallization 



The authors would like to gratefully acknowledge the support of Natural Science Foundation for Key Program of China (No. 50935007) and National Basic Research Program of China (No. 2010CB731701).


  1. 1.
    Vo P, Jahazi M, Yue S (2008) Metall Mater Trans A 39:2965CrossRefGoogle Scholar
  2. 2.
    Liu Y, Zhu J, Wang Y, Zhan J (2008) Mater Sci Eng A 490:113CrossRefGoogle Scholar
  3. 3.
    Sun ZC, Yang H, Han GJ, Fan XG (2010) Mater Sci Eng A 527:3464CrossRefGoogle Scholar
  4. 4.
    Lin YC, Chen MS, Zhong J (2009) J Mater Process Technol 209:2477CrossRefGoogle Scholar
  5. 5.
    Lin YC, Chen MS (2009) Mater Sci Eng A 501:229CrossRefGoogle Scholar
  6. 6.
    Weaver DS, Semiatin SL (2007) Scripta Mater 57:1044CrossRefGoogle Scholar
  7. 7.
    Beer AG, Barnett MR (2009) Scripta Mater 61:1097CrossRefGoogle Scholar
  8. 8.
    Sheppard T, Norley J (1988) Mater Sci Technol 4:903CrossRefGoogle Scholar
  9. 9.
    Ding R, Guo ZX (2004) Mater Sci Eng A 365:172CrossRefGoogle Scholar
  10. 10.
    Ma F, Lu W, Qin J, Zhang D (2006) Mater Sci Eng A 416:59CrossRefGoogle Scholar
  11. 11.
    Jackson M, Dashwood R, Christodoulou L, Flower H (2005) Metall Mater Trans A 36:1317CrossRefGoogle Scholar
  12. 12.
    Zong YY, Shan DB, Xu M, Lv Y (2009) J Mater Process Technol 209:1988.CrossRefGoogle Scholar
  13. 13.
    Zong YY, Shan DB, Lu Y (2006) J Mater Sci 41:3753. doi: CrossRefGoogle Scholar
  14. 14.
    Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon JP (2005) Mater Sci Eng A 396:50CrossRefGoogle Scholar
  15. 15.
    Huang LJ, Geng L, Li AB, Cui XP, Li HZ, Wang GS (2009) Mater Sci Eng A 505:136CrossRefGoogle Scholar
  16. 16.
    Furuhara T, Poorganji B, Abe H, Maki T (2007) JOM 59:64CrossRefGoogle Scholar
  17. 17.
    Ding R, Guo ZX, Wilson A (2002) Mater Sci Eng A 327:233CrossRefGoogle Scholar
  18. 18.
    Semiatin SL, Montheillet F, Shen G, Jonas JJ (2002) Metall Mater Trans A 33:2719CrossRefGoogle Scholar
  19. 19.
    Vo P, Jahazi M, Yue S, Bocher P (2007) Mater Sci Eng A 447:99CrossRefGoogle Scholar
  20. 20.
    Weiss I, Semiatin SL (1999) Mater Sci Eng A 263:243CrossRefGoogle Scholar
  21. 21.
    Luo J, Li M, Li H, Yu W (2009) Mater Sci Eng A 505:88CrossRefGoogle Scholar
  22. 22.
    Niu Y, Hou H, Li M, Li Z (2008) Mater Sci Eng A 492:24CrossRefGoogle Scholar
  23. 23.
    Momeni A, Abbasi SM (2010) Mater Design 31:3599CrossRefGoogle Scholar
  24. 24.
    Li MQ, Pan HS, Lin YY, Luo J (2007) J Mater Process Technol 183:71CrossRefGoogle Scholar
  25. 25.
    Briottet L, Jonas JJ, Montheillet F (1996) Acta Mater 44:1665CrossRefGoogle Scholar
  26. 26.
    Philippart I, Rack HJ (1998) Mater Sci Eng A 243:196CrossRefGoogle Scholar
  27. 27.
    Blaz L, Sakai T, Jonus JJ (1983) Metal Sci 17:609CrossRefGoogle Scholar
  28. 28.
    Kugluer G, Turk R (2004) Acta Mater 52:4659CrossRefGoogle Scholar
  29. 29.
    Fernández AI, López B, Rodriguez-Ibabe JM (1999) Scripta Mater 40:543CrossRefGoogle Scholar
  30. 30.
    Hunphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  31. 31.
    Nes E, Ryum N, Hunderi O (1985) Acta Metall 33:11CrossRefGoogle Scholar
  32. 32.
    Stefansson N, Semiatin SL (2003) Metall Mater Trans A 34:691CrossRefGoogle Scholar
  33. 33.
    Semiatin SL, Kirby BC, Salishchev GA (2004) Metall Mater Trans A 35:2809CrossRefGoogle Scholar
  34. 34.
    Sakai T, Jonas JJ (1984) Acta Metall 32:189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations