Journal of Materials Science

, Volume 46, Issue 18, pp 6007–6017 | Cite as

Modeling ductile to brittle transition temperature of functionally graded steels by fuzzy logic

  • Ali NazariEmail author
  • Amir Ali Milani


In this article, a model based on fuzzy logic (FL) for predicting ductile to brittle transition temperature of functionally graded steels in both crack divider and crack arrester configurations has been presented. Functionally graded steels containing graded ferritic and austenitic regions together with bainite and martensite intermediate layers were produced by electroslag remelting. For purpose of building the model, training and testing using experimental results from 140 specimens produced from two basic composites were conducted. The used data as inputs in FL models are arranged in a format of six input parameters that cover the FGS type, the crack tip configuration, the thickness of graded ferritic region, the thickness of graded austenitic region, the distance of the notch from bainite or martensite intermediate layer, and temperature. According to these input parameters, in the FL, the ductile to brittle transition temperature of each FGS specimen was predicted. It has been found that FL model will be valid within the ranges of variables. The training and testing results in the FL model have shown a strong potential for predicting the ductile to brittle transition temperature of each FGS specimen.


Fuzzy Logic Bainite Charpy Impact Charpy Impact Test Charpy Impact Energy 


  1. 1.
    Haj-Ali R (2009) Int J Damage Mech 18(8):691CrossRefGoogle Scholar
  2. 2.
    Tay TE, Liu G, Yudhanto A, Tan VBC (2008) Int J Damage Mech 17(1):5CrossRefGoogle Scholar
  3. 3.
    Vodopivec F, Arzenšek B, Kmetič D, Vojvodič-Tuma J (2003) MTAEC9 37(6):317Google Scholar
  4. 4.
    Ebrahimi F, Seo HK (1996) Acta Mater 44(2):831CrossRefGoogle Scholar
  5. 5.
    Rouseau CE, Tippur HV (2001) Mech Mater 33:403CrossRefGoogle Scholar
  6. 6.
    Guo LC, Noda N (2008) Int J Solids Struct 45:336CrossRefGoogle Scholar
  7. 7.
    Xu H, Yao X, Feng X, Hisen YY (2008) Mech Mater 40:37CrossRefGoogle Scholar
  8. 8.
    Bezensek B, Hancock JW (2007) Eng Fract Mech 74:2395CrossRefGoogle Scholar
  9. 9.
    Aghazadeh J-M, Shahosseinie MH (2005) Metall Mater Trans A 36:3471CrossRefGoogle Scholar
  10. 10.
    Aghazadeh J-M, Shahosseinie MH, Parastar R-N (2006) Metall Mater Trans A 37:2125CrossRefGoogle Scholar
  11. 11.
    Nazari A, Aghazadeh J-M (2010) J Mater Sci Technol 26(11):1377CrossRefGoogle Scholar
  12. 12.
    Nazari A, Aghazadeh J-M (2009) J Mater Sci Technol 25:847Google Scholar
  13. 13.
    Nazari A, Aghazadeh J-M (2010) J Mater Eng Perform 19:1058CrossRefGoogle Scholar
  14. 14.
    Aghazadeh Mohandesi J, Nazari A, Hamid Vishkasogheh M, Abedi M (2010) Mater Sci Eng 18:075007Google Scholar
  15. 15.
    Nazari A, Aghazadeh J-M, Riahi SH (2010) Int J Damage Mech. doi: CrossRefGoogle Scholar
  16. 16.
    Akkurt S, Tayfur G, Can S (2004) Cement Concr Res 34(8):1429CrossRefGoogle Scholar
  17. 17.
    Baykasoğlu A, Dereli T, Tanış S (2004) Cement Concr Res 34(11):2083CrossRefGoogle Scholar
  18. 18.
    ASTM E23 (2001) In: Annual book of ASTM standards, ASTM, PhiladelphiaGoogle Scholar
  19. 19.
    Zadeh LA (1965) Inform Control 8:338CrossRefGoogle Scholar
  20. 20.
    Mamdani EH (1976) Proc IEEE 121(12):1585Google Scholar
  21. 21.
    Guzelbey IH, Cevik A, Erklig A (2006) J Constr Steel Res 62:962CrossRefGoogle Scholar
  22. 22.
    Guzelbey IH, Cevik A, Gögüs MT (2006) J Constr Steel Res 62:950CrossRefGoogle Scholar
  23. 23.
    Cevik A, Guzelbey IH (2008) Build Environ 43:751CrossRefGoogle Scholar
  24. 24.
    Cevik A, Guzelbey IH (2007) Eng Struct 29(3):383CrossRefGoogle Scholar
  25. 25.
    Topcu IB, Sarıdemir M (2008) Comput Mater Sci 41(3):305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSaveh Branch, Islamic Azad UniversitySavehIran

Personalised recommendations