Journal of Materials Science

, Volume 46, Issue 17, pp 5859–5875 | Cite as

Experimental studies on process-induced morphological characteristics of macro- and microstructures in laser consolidated alloys

  • Jianyin ChenEmail author
  • Lijue Xue
  • Sheng-Hui Wang


Laser consolidation (LC) developed by National Research Council’s Industrial Materials Institute (NRC-IMI-London) since mid-1990s, is a laser cladding based rapid manufacturing and material additive process that could fabricate a “net-shape” functional metallic shape through a “layer-upon-layer” deposition directly from a computer aided design model without using molds or dies. In order to evaluate the LC processability of different materials, some representative nickel-based superalloys (IN-625, IN-718, IN-738, and Waspaloy), stainless steels (austenitic SS316L and martensitic SS420), and lightweight alloys (Ti–6Al–4V titanium alloy and Al-4047 aluminum alloy) have been investigated. Like other laser cladding based processes, due to process-induced rapid directional solidification, the LC alloys have demonstrated certain unique morphological characteristics. Moreover, the “as-consolidated” LC alloys, in nature, are in the “as-quenched” state, and some precipitation processes from their matrices, which are sometimes critical to the development of mechanical performance of the materials, could be effectively suppressed or retarded. Post-heat treatments, therefore, could necessarily facilitate the process of achieving their required operational microstructures. In this article, a comprehensive investigation was performed including metallurgical soundness and process-induced morphological characteristics of the LC materials, and microstructure development brought by post-LC heat treatments using optical microscope, scanning electron microscope, and X-ray diffraction. The implications on the mechanical performance of the LC materials were discussed as well in order to provide essential information for potential industrial applications of the LC materials.


Computer Numerically Control Columnar Dendrite High Solidification Rate Maximum Temperature Gradient Primary Solidification Phase 



The authors would like to acknowledge A. Theriault, A. Gillett, N. Santos, G. Wabersich, B. Gibson, A. Chen, and M. Meinert, NRC-IMI (London, ON), for their important contributions to the preparation of the LC specimens for metallurgical characterization and mechanical testing, and the authors are grateful to Dr. Jiaren (Jimmy) Jiang, NRC Institute for Fuel Cell Innovation (Vancouver, BC), for some useful discussion on rapid directional solidification of metals during the preparation of the manuscript as well.


  1. 1.
    Smugeresky JE, Keicher DM, Romero JA, Griffith ML, Harwell LD (1997) DOC Report #: SAND-97-8652C, USAGoogle Scholar
  2. 2.
    Schlienger E, Dimos D, Griffith M, Michael J, Oliver M (1998) DOC Report #: SAND-98-0664C, USAGoogle Scholar
  3. 3.
    Lewis GK, Nemec RB, Milewski JO, Thoma DJ, Barbe MR, Cremers DA (1994) In: ICALEO’94. LIA, Orlando, p 17Google Scholar
  4. 4.
    Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) JOM 49(5):55CrossRefGoogle Scholar
  5. 5.
    Mazumder J (2000) JOM 52:28CrossRefGoogle Scholar
  6. 6.
    Abbott DH, Arcella FG (1998) Adv Mater Process 153(5):29Google Scholar
  7. 7.
    Murphy ML, Lee C, Steen WM (1993) In: ICALEO’93. LIA, Orlando, p 882Google Scholar
  8. 8.
    Toyserkani E, Khajepour A, Corbin S (2005) Laser cladding. CRC Press, Boca Raton, p 2Google Scholar
  9. 9.
    McLean MA, Shannon GJ, Steen WM (1997) SPIE 3092:753Google Scholar
  10. 10.
    Hill R, Lewis GK (1998) In: Aerospace manufacturing technology conference and exposition: Session: Emerging Processes/Affordability—Part B. SAE, Long BeachGoogle Scholar
  11. 11.
    Mazumder J, Dutta D, Kikuchi N, Ghosh S (2000) Opt Lasers Eng 34:397CrossRefGoogle Scholar
  12. 12.
    Choi J, Hua Y (2004) J Laser Appl 16(4):245CrossRefGoogle Scholar
  13. 13.
    Mazumder J (2004) US20040020625Google Scholar
  14. 14.
    Nowotny S, Scharek S, Beyer E, Richter KH (2007) J Therm Spray Technol 16(3):344CrossRefGoogle Scholar
  15. 15.
    Huan Q, Prabhjot S, Naim AM (2008) CA2618926Google Scholar
  16. 16.
    Toyserkani E, Khajepour A, Corbin S (2005) Laser cladding. CRC Press, Boca Raton, p 8Google Scholar
  17. 17.
    Costa L, Vilar R (2009) Rapid Prototyp J 15(4):264CrossRefGoogle Scholar
  18. 18.
    Xue L, Islam M (1998) In: ICALEO’98. LIA, Orlando, p Section E:15Google Scholar
  19. 19.
    Xue L (2006) In: Session: Additive manufacturing in aerospace manufacturing and automated fastening conference and exhibition. ToulouseGoogle Scholar
  20. 20.
    Xue L, Purcell CJ, Theriault A, Islam M (2001) In: ICALEO’01. LIA, Jacksonville, p 702Google Scholar
  21. 21.
    Xue L, Chen J, Wang SH, Li Y (2009) In: ICALEO’09. LIA, Orlando, (Oral presentation only)Google Scholar
  22. 22.
    Blackwell PL (2005) J Mater Process Technol 170:240CrossRefGoogle Scholar
  23. 23.
    Pinkerton AJ, Karadge M, Syed W, Li L (2006) J Laser Appl 18(3):216CrossRefGoogle Scholar
  24. 24.
    Wang L, Felicelli S, Pratt P (2008) Mater Sci Eng A 496:234CrossRefGoogle Scholar
  25. 25.
    Wu X, Liang J, Mei J, Mitchell C, Goodwin PS, Voice W (2004) Mater Des 25:137CrossRefGoogle Scholar
  26. 26.
    Kummailil J, Sammarco C, Skinner D, Brown CA, Rong K (2005) J Manuf Process 7(1):42CrossRefGoogle Scholar
  27. 27.
    Choi J, Chang Y (2005) Int J Machine Tools Manuf 45:597CrossRefGoogle Scholar
  28. 28.
    Chen J, Xue L (2010) Mater Sci Eng A 527:7318CrossRefGoogle Scholar
  29. 29.
    Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn. ASM International, Materials Park, p 11Google Scholar
  30. 30.
    International ASM (1991) ASM handbook, heat treating, vol 4. ASM International, Materials Park, p 770Google Scholar
  31. 31.
    Donachie MJ (2000) Titanium: a technical guide. ASM International, Materials Park, p 13Google Scholar
  32. 32.
    Aluminium-Verlag Marketing and Kommunikation GmbH (1999) Aluminium handbook: fundamentals and materials, vol 1. Aluminium-Zentrale e.V, Düsseldorf, p 86Google Scholar
  33. 33.
    Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide, 2nd edn. ASM International, Materials Park, p 140Google Scholar
  34. 34.
    Kahlen FJ, Kar A (2001) J Laser Appl 13(2):60CrossRefGoogle Scholar
  35. 35.
    Pryds NH (1997) Rapid solidification of the 12%Cr steel, Risø-R-992 (EN). Risø National Laboratory, Roskile, p 39Google Scholar
  36. 36.
    Marsden CF, West DRF, Steen WM (1987) In: Proceedings of LAMP’ 87. Osaka, Japan, p 401Google Scholar
  37. 37.
    Pryds NH (1997) Rapid solidification of the 12%Cr steel, Risø-R-992 (EN). Risø National Laboratory, Roskile, p 29Google Scholar
  38. 38.
    Lee JH, Kim HC, Jo CY, Kim SK, Shin JH, Liu S, Trivedi R (2005) Mater Sci Eng A 413–414:306CrossRefGoogle Scholar
  39. 39.
    Antonsson T, Fredriksson H (2005) Metall Mater Trans B 36B:85CrossRefGoogle Scholar
  40. 40.
    Vilar R, Conde O, Colin D (1990) In: Sudarshan TS, Bhat DG (eds) Surface modification technologies III. Miner Metals Mater Soc, Warrendale, p 343Google Scholar
  41. 41.
    Colaco R, Vilar R (1997) Scr Mater 36(2):199CrossRefGoogle Scholar
  42. 42.
    Colaco R, Vilar R (1998) In: Sudarshan TS, Jeandin M, Khor KA (eds) Surface modification technologies XI. The Institute of Materials, London, p 600Google Scholar
  43. 43.
    Lin X, Yue TM (2005) Mater Sci Eng A 402:294CrossRefGoogle Scholar
  44. 44.
    Semiatin SL, Kobryn PA (2001) JOM 53:40Google Scholar
  45. 45.
    Bontha S, Klingbeil NW, Kobryn PA, Fraser HL (2006) J Mater Process Technol 178:135CrossRefGoogle Scholar
  46. 46.
    Lavernia EJ, Srivatsan TS (2010) J Mater Sci 45:287. doi: CrossRefGoogle Scholar
  47. 47.
    Xue L, Chen J, Islam M, Pritchard J, Manente D, Rush S (2000) In: ICALEO’ 00. LIA, Dearborn, p D.30Google Scholar
  48. 48.
    ASM International (1980) Metals Handbook, vol 3 (9th edn), properties and selection: stainless steels, tool materials and special-purpose metals. ASM International, Materials Park, p 27Google Scholar

Copyright information

© Her Majesty the Queen 2011

Authors and Affiliations

  1. 1.Industrial Materials InstituteNational Research Council of CanadaLondonCanada
  2. 2.Chalk River LaboratoriesAtomic Energy of Canada LimitedChalk RiverCanada

Personalised recommendations