Journal of Materials Science

, Volume 46, Issue 17, pp 5851–5858 | Cite as

High efficient As(III) removal by self-assembled zinc oxide micro-tubes synthesized by a simple precipitation process

  • Weiyi Yang
  • Qi LiEmail author
  • Shian Gao
  • Jian Ku Shang


Zinc oxide (ZnO) micro-tubes via self-assembly of nanoparticles were synthesized by a simple precipitation process. Removal of As(III) (arsenite) from water by ZnO micro-tubes through adsorption was investigated with both lab-prepared and natural water samples. The result showed that these self-assembled ZnO micro-tubes are effective to remove As(III) from both lab-prepared and natural water samples at near neutral pH environment. These ZnO micro-tubes have a high adsorption capability on As(III) at low As(III) concentration. When the equilibrium As(III) concentration was around 0.1 mg/L, the amount of As(III) adsorbed at equilibrium was over 10 mg/g. At high equilibrium concentration, the adsorption capacity of these ZnO micro-tubes on As(III) reached over 39.4 mg/g. These ZnO micro-tubes could provide a simple single-step treatment option to treat arsenic-contaminated natural water, which requires no pre-treatment or post-treatment pH adjustment for current industrial practice.


Arsenic Arsenic Species Field Emission Scanning Electron Microscopy Image Adsorption Performance Natural Water Sample 



This study was supported by the National Basic Research Program of China, Grant No. 2006CB601201, the Knowledge Innovation Program of Chinese Academy of Sciences, Grant No. Y0N5711171, and the Knowledge Innovation Program of Institute of Metal Research, Grant No. Y0N5A111A1.


  1. 1.
    Nordstrom D (2002) Science 296(5576):2143CrossRefGoogle Scholar
  2. 2.
    Amini M, Abbaspour K, Berg M, Winkel L, Hug S, Hoehn E, Yang H, Johnson C (2008) Environ Sci Technol 42(10):3669CrossRefGoogle Scholar
  3. 3.
    Smith A, Lingas E, Rahman M (2000) Bull World Health Organ 78:1093Google Scholar
  4. 4.
    Hopenhayn-Rich C, Biggs M, Smith A (1998) Int J Epidemiol 27(4):561CrossRefGoogle Scholar
  5. 5.
    Xia Y, Liu J (2004) Toxicology 198(1–3):25CrossRefGoogle Scholar
  6. 6.
    Saha K (2003) Crit Rev Environ Sci Technol 33(2):127CrossRefGoogle Scholar
  7. 7.
    Smith A, Lopipero P, Bates M, Steinmaus C (2002) Science 296(5576):2145CrossRefGoogle Scholar
  8. 8.
    US EPA (2000) Technologies and costs for removal of arsenic from drinking water. US Environmental Protection Agency, WashingtonGoogle Scholar
  9. 9.
    Mohan D, Pittman C (2007) J Hazard Mater 142(1–2):1CrossRefGoogle Scholar
  10. 10.
    Zhang G, Qu J, Liu H, Liu R, Li G (2007) Environ Sci Technol 41(13):4613CrossRefGoogle Scholar
  11. 11.
    Borho M, Wilderer P (1996) Water Sci Technol 34(9):25CrossRefGoogle Scholar
  12. 12.
    Lee H, Choi W (2002) Environ Sci Technol 36(17):3872CrossRefGoogle Scholar
  13. 13.
    Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Environ Sci Technol 38(3):924CrossRefGoogle Scholar
  14. 14.
    Edwards M (1994) J Am Water Works Assoc 86(9):64CrossRefGoogle Scholar
  15. 15.
    McNeill L, Edwards M (1995) J Am Water Works Assoc 87(4):105CrossRefGoogle Scholar
  16. 16.
    Hering J (1996) J Am Water Works Assoc 88(4):155CrossRefGoogle Scholar
  17. 17.
    Pande S, Deshpande L, Patni P, Lutade S (1997) J Environ Sci Health Part A 32(7):1981Google Scholar
  18. 18.
    Özgür Ü, Alivov Y, Liu C, Teke A, Reshchikov M, Doğan S, Avrutin V, Cho S, Morkoc H (2005) J Appl Phys 98:041301CrossRefGoogle Scholar
  19. 19.
    Meyer B, Alves H, Hofmann D, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Straburg M, Dworzak M (2004) Phys Status Solidi (b) 241(2):231CrossRefGoogle Scholar
  20. 20.
    Pan Z, Dai Z, Wang Z (2001) Science 291(5510):1947CrossRefGoogle Scholar
  21. 21.
    Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292(5523):1897CrossRefGoogle Scholar
  22. 22.
    Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H (2002) Adv Funct Mater 12(5):323CrossRefGoogle Scholar
  23. 23.
    Tian Z, Voigt J, Liu J, Mckenzie B, Mcdermott M, Rodriguez M, Konishi H, Xu H (2003) Nat Mater 2(12):821CrossRefGoogle Scholar
  24. 24.
    Iwasaki M, Inubushi Y, Ito S (1997) J Mater Sci Lett 16(18):1503CrossRefGoogle Scholar
  25. 25.
    Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) J Mater Res 10(1):77CrossRefGoogle Scholar
  26. 26.
    Milosevic O, Uskokovic D (1993) Mater Sci Eng A 168(2):249CrossRefGoogle Scholar
  27. 27.
    Chen D, Jiao X, Cheng G (1999) Solid State Commun 113(6):363CrossRefGoogle Scholar
  28. 28.
    Li W, Shi E, Tian M, Zhong W (1998) Sci China Ser E Technol Sci 41(5):449CrossRefGoogle Scholar
  29. 29.
    Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Chem Mater 14(10):4172CrossRefGoogle Scholar
  30. 30.
    Yao B, Chan Y, Wang N (2002) Appl Phys Lett 81:757CrossRefGoogle Scholar
  31. 31.
    Yamabi S, Imai H (2002) J Mater Chem 12(12):3773CrossRefGoogle Scholar
  32. 32.
    Hu J, Bando Y (2003) Appl Phys Lett 82:1401CrossRefGoogle Scholar
  33. 33.
    Li Q, Kumar V, Li Y, Zhang H, Marks T, Chang R (2005) Chem Mater 17(5):1001CrossRefGoogle Scholar
  34. 34.
    Hristovski K, Baumgardner A, Westerhoff P (2007) J Hazard Mater 147(1–2):265CrossRefGoogle Scholar
  35. 35.
    Pena M, Korfiatis G, Patel M, Lippincott L, Meng X (2005) Water Res 39(11):2327CrossRefGoogle Scholar
  36. 36.
    Barrett C, Massalski TB (1966) Structure of metals. McGraw Hill, New YorkGoogle Scholar
  37. 37.
    Sa Y, Aktay Y (2002) Biochem Eng J 12(2):143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Materials Center for Water Purification, Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations