Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5822–5829 | Cite as

Characterisation of thermo-mechanical properties of MgO–Al2O3–SiO2 glass ceramic with different heat treatment temperatures

  • Z. ShamsudinEmail author
  • A. HodzicEmail author
  • C. Soutis
  • R. J. Hand
  • S. A. Hayes
  • I. P. Bond
Article

Abstract

The effects of heat treatment temperature on crystallisation behaviour, precipitated phases and thermo-mechanical properties of some MgO–Al2O3–SiO2 (MAS) glass-ceramics were investigated. Crystallisation behaviour of MgO–Al2O3–SiO2 glasses in the presence of TiO2 as a nucleation agent was studied. The crystalline phases present in the heat treated samples were identified by X-ray diffraction (XRD). It was observed from XRD studies that magnesium aluminium titanate initially precipitated and when the heat treatment temperature was increased to 1140 °C, depending on the thermal history, either magnesium silicate, aluminium titanate and quartz or magnesium aluminium titanate, magnesium aluminate and quartz were precipitated. SEM observation revealed that the heat treatment led to phase separation of droplet-shaped crystals before the needle-shaped crystals formed at 1140 °C. The effect of annealing temperature on the density and mechanical properties of these glass-ceramic were characterised by nanoindentation and the results revealed a significant increase in hardness of the fully crystallised system.

Keywords

TiO2 Differential Thermal Analysis Heat Treatment Temperature MgAl2O4 Nucleate Agent 

Notes

Acknowledgements

The authors wish to express their thanks to Mr Dean Haylock, Miss Bev Lane, Mr Philip Staton and Mr Pete Bailey for their technical assistance with glass melting, thermal analysis, sample preparation and technical advice. ZS would like to thank Universiti Teknikal Malaysia Melaka for granting her concession and study leave to undertake her PhD degree. The authors also wish to acknowledge Alstom (Areva) for the use of DTA.

References

  1. 1.
    Lawrence CW, Briggs GAD (1993) J Mater Sci 28:3645. doi: https://doi.org/10.1007/BF01159848 CrossRefGoogle Scholar
  2. 2.
    Reich CH, Brückner R (1997) Compos Sci Technol 57:533CrossRefGoogle Scholar
  3. 3.
    Yilmaz R, Taylor R (2007) J Mater Sci 42:4115. doi: https://doi.org/10.1007/s10853-007-1656-0 CrossRefGoogle Scholar
  4. 4.
    Ahn JM, Mall S (2009) Int J Appl Ceram Technol 6(1):45CrossRefGoogle Scholar
  5. 5.
    Shao H, Liang K, Zhou F, Wang G, Hu A (2005) Mater Res Bull 40:499CrossRefGoogle Scholar
  6. 6.
    Wange P, Höche T, Rüssel C, Schnapp JD (2002) J Non-Cryst Solids 298:137CrossRefGoogle Scholar
  7. 7.
    Owate IO, Freer R (1990) J Mater Sci 25:5291. doi: https://doi.org/10.1007/BF00580163 CrossRefGoogle Scholar
  8. 8.
    Gupta PK (1988) In: Bunsell AR (ed) Fibre reinforcements for composite materials, Elsevier, AmsterdamGoogle Scholar
  9. 9.
    McMillan PW (1979) Glass-ceramic. Academic, LondonGoogle Scholar
  10. 10.
    Strand Z (1986) Glass-ceramic materials. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Hwang SP, Wu JM (2001) J Am Ceram Soc 84:1108CrossRefGoogle Scholar
  12. 12.
    Gregory AG, Veasay TJ (1973) J Mater Sci 8(3):324. doi: https://doi.org/10.1007/BF00550151 CrossRefGoogle Scholar
  13. 13.
    Rawson H (1988) Properties and applications of glass. Elsevier, New YorkGoogle Scholar
  14. 14.
    Ashbee KHG (1973) J Mater Sci 10:911. doi: https://doi.org/10.1007/BF00823206 CrossRefGoogle Scholar
  15. 15.
    Onishi M, Kyoto M, Watanabe M (1991) J Appl Phys 30(6A):988CrossRefGoogle Scholar
  16. 16.
    Sakamoto A, Yamamoto S (2003) J Mater Sci 38:2305. doi: https://doi.org/10.1023/A:1023920110755 CrossRefGoogle Scholar
  17. 17.
    Goswami M, Mirza T, Sarkar A, Manikandan S, Sangeeta SL, Verma KR, Gurumurthy VK, Shrikhande Kothiyal GP (2001) Bull Mater Sci 23(5):377CrossRefGoogle Scholar
  18. 18.
    Halváč J (1983) The technology of glass and ceramic: an introduction. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Zdaniewski W (1973) J Mater Sci 8:192. doi: https://doi.org/10.1007/BF00550667 CrossRefGoogle Scholar
  20. 20.
    Goel A, Shaaban ER, Melo FCL, Ribeiro MJ, Ferreira JMF (2007) J Non-Cryst Solids 353:2383CrossRefGoogle Scholar
  21. 21.
    Shao H, Liang K, Peng F (2004) Ceram Int 30:927CrossRefGoogle Scholar
  22. 22.
    Weaver DT, Van Aken DC, Smith JD (2004) J Mater Sci 39:51. doi: https://doi.org/10.1023/B:JMSC.0000007727.10682.b6 CrossRefGoogle Scholar
  23. 23.
    Quyang XQ, Xiao ZH, Lu AX (2009) Advc Appl 108:178Google Scholar
  24. 24.
    Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564CrossRefGoogle Scholar
  25. 25.
    Doerner MF, Nix WD (1986) J Mater Res 1:601CrossRefGoogle Scholar
  26. 26.
    Amista P, Cesari M, Montena A, Gnappi G, Lan L (1995) J Non-Cryst Solids 192&193:529CrossRefGoogle Scholar
  27. 27.
    Shyu JJ, Wu JM (1991) J Mater Sci Lett 10:1056CrossRefGoogle Scholar
  28. 28.
    Minsheng M, Wen N, Yali W, Zhongjie W, Fengmei L (2008) J Non-Cryst Solids 354:5395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of SheffieldSheffieldUnited Kingdom
  2. 2.Department of Materials Science and EngineeringThe University of SheffieldSheffieldUnited Kingdom
  3. 3.Department of Aerospace EngineeringThe University of BristolBristolUnited Kingdom

Personalised recommendations