Journal of Materials Science

, Volume 46, Issue 17, pp 5775–5789 | Cite as

Optical study of poly(vinyl alcohol)/hydroxypropyl methylcellulose blends

  • Osiris W. GuirguisEmail author
  • Manal T. H. Moselhey


The proposal in this study was to evaluate the optical properties of different biopolymers films. The materials used were poly(vinyl alcohol) (PVA) and hydroxypropyl methylcellulose (HPMC). PVA/HPMC blends were prepared by casting technique. Variations in the group coordination in the infrared region were followed. The effects of HPMC concentrations on the optical properties of the PVA films were studied by near infrared, ultraviolet/visible, transmittance, and reflectance in the spectral region 200–2500 nm. Absorption, transmittance, and reflectance spectra were used for the determination of the optical constants. The study has been also extended to include the changes in the optical parameters including the band tail width and band gap energies and extinction coefficient for the investigated films. The results indicate that the optical band gap was derived from Tauc’s extrapolation and decreases with the HPMC contents. The obtained optical parameters were found to be strongly affected by HPMC contents.


Vinyl Alcohol Hydroxypropyl Methylcellulose Color Constant Molecular Configuration Band Tail 



The authors are very grateful to the late Prof. Dr. El-Sayed A. Gaafar, Professor of Biophysics, Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt, for his kind help to bring this study.


  1. 1.
    Dumitriu S (1996) Polymeric biomaterials. Marcel Dekker Inc., New YorkGoogle Scholar
  2. 2.
    Abdullah OG, Hussen SA (2010) International Conference on Manufacturing Science and Technology (ICMST), University of Sulaimani, SulaimaniGoogle Scholar
  3. 3.
    Kulkarni RV, Sa B (2009) J Bioact Compat Pol 24:368CrossRefGoogle Scholar
  4. 4.
    Prichard GJ (1970) Poly(vinyl alcohol): basis principles and uses. Gordon and Breach, New YorkGoogle Scholar
  5. 5.
    Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP (1999) Tissue Eng 5:525CrossRefGoogle Scholar
  6. 6.
    Peppas NA, Merril EW (1977) J Biomed Mater Res 11:423CrossRefGoogle Scholar
  7. 7.
    Eaga CM, Kandukuri JM, Allenki V, Yamsani MR (2009) Der Pharm Lett 1:21Google Scholar
  8. 8.
    Dumoulin MM, Carreau PJ, Utracki LA (1987) Polym Eng Sci 27:1627CrossRefGoogle Scholar
  9. 9.
    Zhang J, Yuan K, Wang Y, Zhang S, Zhang J (2007) J Bioact Compat Polym 22:207CrossRefGoogle Scholar
  10. 10.
    Kim SJ, Lee YM, Kim IY, Kim SI (2003) React Funct Polym 55:291CrossRefGoogle Scholar
  11. 11.
    Hofenk-de Graaff J (1981) Central research laboratory for objects of art and science. Gabriel Metsustroat and 1071 EA, Amsterdam, the NetherlandsGoogle Scholar
  12. 12.
    Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Express Polym Lett 2:758CrossRefGoogle Scholar
  13. 13.
    Leea C-Y, Chen G-L, Sheu M-T, Liu C-H (2006) Chin Pharm J 58:57Google Scholar
  14. 14.
    El-Zaher NA, Osiris WG (2005) J Appl Polym Sci 96:1914CrossRefGoogle Scholar
  15. 15.
    Abd El-Raheem MM (2007) J Phys Condens Matter 19:216209CrossRefGoogle Scholar
  16. 16.
    Tintu R, Saurav K, Sulakshna K, Nampoori VPN, Radhakrishnan P, Thomas S (2010) J Non-Oxide Glasses 2:167Google Scholar
  17. 17.
    Wood DL, Tauc J (1972) Phys Rev B 5:3144CrossRefGoogle Scholar
  18. 18.
    Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon, OxfordGoogle Scholar
  19. 19.
    CIE Recommendation on Colorimetry (1986) CIE Publ. No. 15.2. Central Bureau of the CIE, ViennaGoogle Scholar
  20. 20.
    CIE Recommendation on Uniform Color Spaces (1971, 1978), Color difference equations, psychometric color terms, Suppl. No. 2 of CIE Publ. No. 15 (E-1.3.1), ParisGoogle Scholar
  21. 21.
    Shiboyama M, Yamamoto T, Xiao C-F, Sakurai S, Hayami A, Nomura S (1991) Polymer 32:1010CrossRefGoogle Scholar
  22. 22.
    Sakellariou P, Hassan A, Rowe RC (1993) Polymer 34:1240CrossRefGoogle Scholar
  23. 23.
    Park CK, Choi MJ, Lee YM (1995) Polymer 37:1507CrossRefGoogle Scholar
  24. 24.
    Smith AL (1979) Applied infrared spectroscopy, fundamentals techniques and analytical problem-solving. Wiley, New YorkGoogle Scholar
  25. 25.
    Desai RL, Shields JA (1969) Die Makromol Chem 122:134CrossRefGoogle Scholar
  26. 26.
    Bernard C, Chaussedent S, Monteil A, Montagna M, Zampedri L, Ferrari M (2003) J Sol-Gel Sci Technol 26:925CrossRefGoogle Scholar
  27. 27.
    Gaafar MS, Marzouk SY (2007) Phys B Condens Matter 388:294CrossRefGoogle Scholar
  28. 28.
    Saddeek YB, Azooz MA, Kenawy SH (2005) Mater Chem Phys 94:213CrossRefGoogle Scholar
  29. 29.
    Osborne BG, Fearn T (1986) Near infrared spectroscopy in food analysis. Longman Scientific and Technical Groups. Wiley, New YorkGoogle Scholar
  30. 30.
    Tager A (1972) Physical chemistry of polymer. Mir Publishers, MoscowGoogle Scholar
  31. 31.
    Chikwenze RA, Nnabuchi MN (2010) Chalcogenide Lett 7:389Google Scholar
  32. 32.
    Abd El-Kader FH, Gafer SA, Basha AF, Bannan SI, Basha MAF (2010) J Appl Polym Sci 118:413CrossRefGoogle Scholar
  33. 33.
    Miller A (1994) Handbook of optics, vol 1. McGraw-Hill, New YorkGoogle Scholar
  34. 34.
    Pankove JI (1975) Optical process in semiconductors. Devers Publication, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Biophysics DepartmentFaculty of Science, Cairo UniversityGizaEgypt

Personalised recommendations