Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5768–5774 | Cite as

Compositional and metal-insulator transition characteristics of sputtered vanadium oxide thin films on yttria-stabilized zirconia

  • Gokul GopalakrishnanEmail author
  • Shriram Ramanathan
Article

Abstract

Vanadium dioxide (VO2) thin films have been shown to undergo a rapid electronic phase transition near 70 °C from a semiconductor to a metal, making it an interesting candidate for exploring potential application in high speed electronic devices such as optical switches, tunable capacitors, and field effect transistors. A critical aspect of lithographic fabrication in devices utilizing electric field effects in VO2 is the ability to grow VO2 over thin dielectric films. In this article, we study the properties of VO2 grown on thin films of Yttria-Stabilized Zirconia (YSZ). Near room temperature, YSZ is a good insulator with a high dielectric constant (\(\epsilon _{\rm r} > 25\)). We demonstrate the sputter growth of polycrystalline VO2 on YSZ thin films, showing a three order resistivity transition near 70 °C with transition and hysteresis widths of approximately 7 °C each. We examine the relationship between chemical composition and transition characteristics of mixed phase vanadium oxide films. We investigate changes in composition induced by low temperature post-deposition annealing in oxidizing and reducing atmospheres, and report their effects on electronic properties.

Keywords

Transition Characteristic Vanadium Oxide Vanadium Dioxide Hysteresis Width Relative Sensitivity Factor 

Notes

Acknowledgements

The authors would like to thank Yanjie Cui and Kian Kerman for technical assistance as well as Zheng Yang for valuable discussions. We acknowledge NSF supplement PHY-0601184 for financial support. Device fabrication was performed, in part, at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN) which is supported by NSF Award No. ECS-0335765.

References

  1. 1.
    Berglund CN, Guggenheim HJ (1969) Phys Rev 185:1022CrossRefGoogle Scholar
  2. 2.
    Goodenough JB (1971) J Solid State Chem 3:490CrossRefGoogle Scholar
  3. 3.
    Morin FJ (1959) Phys Rev Lett 3:34CrossRefGoogle Scholar
  4. 4.
    Zylbersztejn A, Mott NF (1975) Phys Rev 11:4383CrossRefGoogle Scholar
  5. 5.
    Cavalleri A et al. (2001) Phys Rev Lett 87:237401CrossRefGoogle Scholar
  6. 6.
    Qazilbash MM et al. (2007) Science 318:1750CrossRefGoogle Scholar
  7. 7.
    Sakai J et al. (2008) Phys Rev B 78:033106CrossRefGoogle Scholar
  8. 8.
    Stefanovich G et al. (2000) J Phys Condens Matter 12:8837CrossRefGoogle Scholar
  9. 9.
    Kim HT et al. (2004) New J Phys 6:52CrossRefGoogle Scholar
  10. 10.
    Okimura K, Sakai J (2007) Jpn J Appl Phys 46:813CrossRefGoogle Scholar
  11. 11.
    Ko C, Ramanathan S (2008) Appl Phys Lett 93:252101CrossRefGoogle Scholar
  12. 12.
    Ruzmetov D et al. (2009) J Appl Phys 106:083702CrossRefGoogle Scholar
  13. 13.
    Ruzmetov D et al. (2007) J Appl Phys 102:113715CrossRefGoogle Scholar
  14. 14.
    Ruzmetov D et al. (2010) J Appl Phys 107:114516CrossRefGoogle Scholar
  15. 15.
    Lee JS et al. (2007) Appl Phys Lett 90:015907Google Scholar
  16. 16.
    Lee JS et al. (2007) Appl Phys Lett 91:133509CrossRefGoogle Scholar
  17. 17.
    Gopalakrishnan G et al. (2009) J Mater Sci 44:5345. doi: https://doi.org/10.1007/s10853-009-3442-7 CrossRefGoogle Scholar
  18. 18.
    Gupta A et al. (2009) Appl Phys Lett 95:111915CrossRefGoogle Scholar
  19. 19.
    Chae BG et al. (2004) J Korean Phys Soc 44:884Google Scholar
  20. 20.
    Zhu J, Liu JG (2003) Mater Lett 57:4297CrossRefGoogle Scholar
  21. 21.
    Norian KH, Hazell LB (1978) Thin Solid Films 54:L9CrossRefGoogle Scholar
  22. 22.
    Krishna MG et al. (1997) Thin Solid Films 312:116CrossRefGoogle Scholar
  23. 23.
    Sawatzky GA, Post D (1979) Phys Rev B 20:1546CrossRefGoogle Scholar
  24. 24.
    Demeter M et al. (2000) Surf Sci 454:41CrossRefGoogle Scholar
  25. 25.
    Youn DH et al. (2004) J Vac Sci Technol A 22:719CrossRefGoogle Scholar
  26. 26.
    Youn DH et al. (2004) J Appl Phys 95:1407CrossRefGoogle Scholar
  27. 27.
    Yun SJ et al. (2008) Electrochem Solid State Lett 1:H173CrossRefGoogle Scholar
  28. 28.
    Yang Z et al. (2010) Phys Rev B 82:205101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations