Journal of Materials Science

, Volume 46, Issue 17, pp 5743–5750 | Cite as

Electrical conductivity and dielectric properties of cadmium thiogallate CdGa2S4 thin films

  • M. M. El-NahassEmail author
  • E. A. A. El-Shazly
  • A. M. A. El-Barry
  • H. S. S. Omar


Cadmium thiogallate CdGa2S4 thin films were prepared using a conventional thermal evaporation technique. The dark electrical resistivity calculations were carried out at different elevated temperatures in the range 303–423 K and in thickness range 235–457 nm. The ac conductivity and dielectric properties of CdGa2S4 film with thickness 457 nm has been studied as a function of temperature in the range from 303 to 383 K and in frequency range from 174 Hz to 1.4 MHz. The experimental results indicate that σac(ω) is proportional to ωs and s ranges from 0.674 to 0.804. It was found that s increases by increasing temperature. The results obtained are discussed in terms of the non overlapping small polaron tunneling model. The dielectric constant (ε′) and dielectric loss (ε″) were found to be decreased by increasing frequency and increased by increasing temperature. The maximum barrier height (Wm) was estimated from the analysis of the dielectric loss (ε″) according to Giuntini’s equation. Its value for the as-deposited films was found to be 0.294 eV.


Dielectric Loss Annealed Film Bulk Resistivity Thermal Activation Energy Orientational Polarization 


  1. 1.
    Ozaki S, Muto K, Adachi S (2003) J Phys Chem Solids 64:1935CrossRefGoogle Scholar
  2. 2.
    Kerimova TG, Sultanova AG (2002) Inorg Mater 38:992CrossRefGoogle Scholar
  3. 3.
    Mohammed MI, Abd-rabo AS, Mahmoud EA (2002) Egypt J Solid 25:49Google Scholar
  4. 4.
    Bekheet AE, Hegab NA (2009) Vacuum 83:391CrossRefGoogle Scholar
  5. 5.
    El-Nahass MM, Farid AM, Attia AA, Ali HAM (2005) Egypt J Solid 28:217Google Scholar
  6. 6.
    El-Nahass MM, Bahabri FS, Ghamdi AAAL, Al-Harbi SR (2002) Egypt J Solid 25:307Google Scholar
  7. 7.
    lakshminarayana D, Desai RR (1993) J Mater Sci Mater Electronics 4:183CrossRefGoogle Scholar
  8. 8.
    Chopra KL (1969) Thin film phenomena. McGraw Hill, New York, p 270Google Scholar
  9. 9.
    Soliman HS, EL-Barry AMA, Khosipan NM (2007) E P J Appl Phys 37:1CrossRefGoogle Scholar
  10. 10.
    Hassan AK, Gould RD, Ray AK (1996) Phys Stat Sol (a) K23:158Google Scholar
  11. 11.
    Soliman HS, El Nahass MM, Farid AM, Farag AAM, El Shazly AA (2003) Eur J Appl Phys 21:187CrossRefGoogle Scholar
  12. 12.
    El Nahass MM, Soliman HS, El Shazly EAA (2003) Mod Phys Lett B 17:771CrossRefGoogle Scholar
  13. 13.
    Rud VY, Rud YV, Vaipolin AA, Bodnar IV, Fernelius N (2003) Semiconductors 37:1283CrossRefGoogle Scholar
  14. 14.
    El-Nahass MM, El-Deeb AF, El-Sayed HEA, Hassanien AM (2007) Phys B 388:26CrossRefGoogle Scholar
  15. 15.
    Saleh AM, Gould RD, Hassan AK (1993) Phys Stat Sol (a) 139:379CrossRefGoogle Scholar
  16. 16.
    Elliot SR (1987) Adv Phys 36:135CrossRefGoogle Scholar
  17. 17.
    Bhatnagar VK, Bhatia KL (1990) J Non-Cryst Solids 119:214CrossRefGoogle Scholar
  18. 18.
    Stearn AE, Eyring H (1973) J Chem Phys 5:113CrossRefGoogle Scholar
  19. 19.
    Farid AM, Bekheet AE (2000) Vacuum 59:932CrossRefGoogle Scholar
  20. 20.
    Atyia HE, Farid AM, Hegab NA (2008) Phys B 403:3980CrossRefGoogle Scholar
  21. 21.
    Salem AM, El-Gendy YA, Sakr GB (2009) Chin J Phys 47:8Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. M. El-Nahass
    • 1
    Email author
  • E. A. A. El-Shazly
    • 1
  • A. M. A. El-Barry
    • 1
  • H. S. S. Omar
    • 1
  1. 1.Faculty of Education, Physics Department, Thin Film LaboratoryAin Shams UniversityCairoEgypt

Personalised recommendations