Synthesis and characterization of water-soluble l-cysteine-modified ZnS nanocrystals doped with silver
- 315 Downloads
- 8 Citations
Abstract
The water-soluble Ag+-doped ZnS nanocrystals surface capped with cysteine (expressed as ZnS:Ag/Cys) were synthesized in aqueous solution by using l-cysteine as surface modifier. The crystal structure, size, shape, component, and spectral properties of ZnS:Ag/Cys nanocrystals were characterized by X-ray power diffraction, transmission electron microscope, energy dispersive X-ray analysis, inductively coupled plasma atomic emission spectrometry, infrared spectrum, UV–Vis absorption spectrum, and photoluminescence spectrum. The results show that the spherical ZnS:Ag/Cys nanocrystals with an average diameter of 2.6 nm have good fluorescent characteristics, their fluorescence intensity is enhanced greatly after doped with Ag+. And the sulfur atoms in cysteine molecules are coordinated with metal ions on the surface of the nanocrystals, the cysteine modified on the surface of ZnS:Ag/Cys nanocrystals renders the nanocrystals water soluble and biocompatible. The ZnS:Ag/Cys nanocrystals have potential applications in molecular assembly and biological fluorescence analysis.
Keywords
Inductively Couple Plasma Atomic Emission Spectrometry Ag2S Couple Plasma Atomic Emission Spectrometry Inductively Couple Plasma Atomic Emission Spectrometry Analysis Dope NanocrystalsNotes
Acknowledgements
This project is financially supported by the Nature Science Foundation of Fujian Province of China (2009J01022), and the Science Foundation of Department of Education of Fujian Province of China (JB07075).
References
- 1.Simmons BA, Li S, John VT (2002) Nano Lett 2:263CrossRefGoogle Scholar
- 2.Chan WCW, Nie SM (1998) Science 281:2016CrossRefGoogle Scholar
- 3.Bhargava RN, Gallagher D (1994) Phys Rev Lett 72(3):416CrossRefGoogle Scholar
- 4.Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013CrossRefGoogle Scholar
- 5.Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538CrossRefGoogle Scholar
- 6.Bailey RE, Smith AM, Nie S (2004) Phys E 25:1CrossRefGoogle Scholar
- 7.Taylor JR, Fang MM, Nie S (2000) Anal Chem 72:1979CrossRefGoogle Scholar
- 8.Yang P, Lv MK, Xu D (2001) Chem Phys Lett 336(1/2):76CrossRefGoogle Scholar
- 9.Kim DJ, Min KD, Lee JW (2006) Mater Sci Eng B 131(1/3):13CrossRefGoogle Scholar
- 10.Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142CrossRefGoogle Scholar
- 11.Zhao Y, Zhang Y, Zhu H, Hadjipanayis GC, Xiao JQ (2004) J Am Chem Soc 126:6874CrossRefGoogle Scholar
- 12.Han SD, Singh KC, Lee HS (2008) Mater Chem Phys 112(3):1083CrossRefGoogle Scholar
- 13.Sfihi H, Takahashi H, Sato W (2006) J Alloys Compd 424(1/2):187CrossRefGoogle Scholar
- 14.Yang P, Lv M, Xu D (2002) Appl Phys A 74(2):257CrossRefGoogle Scholar
- 15.Song HY, Leem YM, Kim BG (2008) J Phys Chem Solids 69(1):153CrossRefGoogle Scholar
- 16.Mu J, Gu DY, Xu ZZ (2005) Mater Res Bull 40(12):2198CrossRefGoogle Scholar
- 17.Jindal Z, Verma NK (2008) J Mater Sci 43:6539. doi: https://doi.org/10.1007/s10853-008-2818-4 CrossRefGoogle Scholar
- 18.Wang MW, Sun LD (2000) Solid State Commun 115:493CrossRefGoogle Scholar
- 19.Hao EC, Sun YP, Yang B (1998) J Colloid Interface Sci 204:369CrossRefGoogle Scholar
- 20.Jian WP, Zhuang JQ, Zhang DW (2006) Mater Chem Phys 99:494CrossRefGoogle Scholar
- 21.Bae W, Abdullah R, Mehra RK (1998) Chemosphere 37:363CrossRefGoogle Scholar
- 22.Chemseddine A, Weller H, Ber BG (1993) Phys Chem 97:636Google Scholar
- 23.Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. Wiley, New York, p 687Google Scholar
- 24.Sadtler Standard Infrared Spectra (1963) Sadtler Research Laboratories, Inc. Press, Philadelphia, p. 21937Google Scholar
- 25.Manzoor K, Vadera SR, Kumar N (2003) Mater Chem Phys 82:718CrossRefGoogle Scholar