Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5732–5736 | Cite as

Synthesis and characterization of water-soluble l-cysteine-modified ZnS nanocrystals doped with silver

  • Fenghua HuangEmail author
  • Yaling Lan
  • Peifeng Chen
Article

Abstract

The water-soluble Ag+-doped ZnS nanocrystals surface capped with cysteine (expressed as ZnS:Ag/Cys) were synthesized in aqueous solution by using l-cysteine as surface modifier. The crystal structure, size, shape, component, and spectral properties of ZnS:Ag/Cys nanocrystals were characterized by X-ray power diffraction, transmission electron microscope, energy dispersive X-ray analysis, inductively coupled plasma atomic emission spectrometry, infrared spectrum, UV–Vis absorption spectrum, and photoluminescence spectrum. The results show that the spherical ZnS:Ag/Cys nanocrystals with an average diameter of 2.6 nm have good fluorescent characteristics, their fluorescence intensity is enhanced greatly after doped with Ag+. And the sulfur atoms in cysteine molecules are coordinated with metal ions on the surface of the nanocrystals, the cysteine modified on the surface of ZnS:Ag/Cys nanocrystals renders the nanocrystals water soluble and biocompatible. The ZnS:Ag/Cys nanocrystals have potential applications in molecular assembly and biological fluorescence analysis.

Keywords

Inductively Couple Plasma Atomic Emission Spectrometry Ag2S Couple Plasma Atomic Emission Spectrometry Inductively Couple Plasma Atomic Emission Spectrometry Analysis Dope Nanocrystals 

Notes

Acknowledgements

This project is financially supported by the Nature Science Foundation of Fujian Province of China (2009J01022), and the Science Foundation of Department of Education of Fujian Province of China (JB07075).

References

  1. 1.
    Simmons BA, Li S, John VT (2002) Nano Lett 2:263CrossRefGoogle Scholar
  2. 2.
    Chan WCW, Nie SM (1998) Science 281:2016CrossRefGoogle Scholar
  3. 3.
    Bhargava RN, Gallagher D (1994) Phys Rev Lett 72(3):416CrossRefGoogle Scholar
  4. 4.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013CrossRefGoogle Scholar
  5. 5.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538CrossRefGoogle Scholar
  6. 6.
    Bailey RE, Smith AM, Nie S (2004) Phys E 25:1CrossRefGoogle Scholar
  7. 7.
    Taylor JR, Fang MM, Nie S (2000) Anal Chem 72:1979CrossRefGoogle Scholar
  8. 8.
    Yang P, Lv MK, Xu D (2001) Chem Phys Lett 336(1/2):76CrossRefGoogle Scholar
  9. 9.
    Kim DJ, Min KD, Lee JW (2006) Mater Sci Eng B 131(1/3):13CrossRefGoogle Scholar
  10. 10.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) J Am Chem Soc 122:12142CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Zhang Y, Zhu H, Hadjipanayis GC, Xiao JQ (2004) J Am Chem Soc 126:6874CrossRefGoogle Scholar
  12. 12.
    Han SD, Singh KC, Lee HS (2008) Mater Chem Phys 112(3):1083CrossRefGoogle Scholar
  13. 13.
    Sfihi H, Takahashi H, Sato W (2006) J Alloys Compd 424(1/2):187CrossRefGoogle Scholar
  14. 14.
    Yang P, Lv M, Xu D (2002) Appl Phys A 74(2):257CrossRefGoogle Scholar
  15. 15.
    Song HY, Leem YM, Kim BG (2008) J Phys Chem Solids 69(1):153CrossRefGoogle Scholar
  16. 16.
    Mu J, Gu DY, Xu ZZ (2005) Mater Res Bull 40(12):2198CrossRefGoogle Scholar
  17. 17.
    Jindal Z, Verma NK (2008) J Mater Sci 43:6539. doi: https://doi.org/10.1007/s10853-008-2818-4 CrossRefGoogle Scholar
  18. 18.
    Wang MW, Sun LD (2000) Solid State Commun 115:493CrossRefGoogle Scholar
  19. 19.
    Hao EC, Sun YP, Yang B (1998) J Colloid Interface Sci 204:369CrossRefGoogle Scholar
  20. 20.
    Jian WP, Zhuang JQ, Zhang DW (2006) Mater Chem Phys 99:494CrossRefGoogle Scholar
  21. 21.
    Bae W, Abdullah R, Mehra RK (1998) Chemosphere 37:363CrossRefGoogle Scholar
  22. 22.
    Chemseddine A, Weller H, Ber BG (1993) Phys Chem 97:636Google Scholar
  23. 23.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. Wiley, New York, p 687Google Scholar
  24. 24.
    Sadtler Standard Infrared Spectra (1963) Sadtler Research Laboratories, Inc. Press, Philadelphia, p. 21937Google Scholar
  25. 25.
    Manzoor K, Vadera SR, Kumar N (2003) Mater Chem Phys 82:718CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceFujian Normal UniversityFuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Polymer Materials of Fujian ProvinceFuzhouPeople’s Republic of China

Personalised recommendations