Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5715–5722 | Cite as

In situ synthesis of gold–polyaniline composite in nanopores of polycarbonate membrane

  • Manoj K. Sharma
  • Arvind S. Ambolikar
  • Suresh K. AggarwalEmail author
Article

Abstract

In situ one-step chemical synthesis route for the preparation of a gold–polyaniline composite in nanopores of polycarbonate (PC) membrane is reported. PC membrane, which was placed in a specially designed two-compartment cell, separated the aqueous solution of aniline from HAuCl4 solution. Concentration gradient across the membrane caused movement of AuCl4 and anilinium ions in the pores of polycarbonate membrane. Nanopores in PC membrane acted as reaction vessels where aniline and HAuCl4 were allowed to mix together, and the redox reaction between aniline and HAuCl4 led to the formation of gold–polyaniline composite. The gold–polyaniline composite in PC membrane was characterised by EDXRF, XRD, UV–Vis spectroscopy, FTIR and TEM. Peak broadening in XRD suggests that Au particles formed in the membrane are nanocrystallites and average crystallite size is (24 ± 4) nm. TEM studies show that gold nanoparticles are randomly dispersed in polyaniline clusters formed in the nanopores of PC membrane. Characterisation results show that the surfaces of the PC membrane exposed to HAuCl4 and aniline have significantly higher concentrations of Au nanoparticles and polyaniline, respectively.

Keywords

Polyaniline Aniline Gold Nanoparticles Gold Particle HAuCl4 

Notes

Acknowledgements

The authors thank Dr. K. Krishnan, Fuel Chemistry Division, BARC, for carrying out XRD and Mr. S. Sanjay Kumar, Fuel Chemistry Division, BARC, for EDXRF analyses. The authors also thank Dr. R. Tewari, Material Science Division, BARC, for carrying out TEM experiments.

References

  1. 1.
    Smith JA, Josowicz M, Janata J (2005) Phys Chem Chem Phys 7:3614CrossRefGoogle Scholar
  2. 2.
    Smith JA, Josowicz M (2005) Phys Chem Chem Phys 7:3619CrossRefGoogle Scholar
  3. 3.
    Jing S, Xing S, Yu L, Wu Y, Zhao C (2007) Mater Lett 61:2794CrossRefGoogle Scholar
  4. 4.
    Ward RE, Meyer TY (2003) Macromolecules 36:4368CrossRefGoogle Scholar
  5. 5.
    Huang JX, Moore JA, Acquaye JH, Kaner RB (2005) Macromolecules 38:317CrossRefGoogle Scholar
  6. 6.
    Englebienne P, Hoonacker AV (2005) J Colloid Interface Sci 292:445CrossRefGoogle Scholar
  7. 7.
    Zhang D, Wang Y (2006) Mater Sci Eng B 134:9CrossRefGoogle Scholar
  8. 8.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34:783CrossRefGoogle Scholar
  9. 9.
    Sarma TK, Chattopadhyay A (2004) Langmuir 20:4733CrossRefGoogle Scholar
  10. 10.
    Cui G, Lee JS, Kim SJ, Nam H, Cha GS, Kim HD (1998) Analyst 123:1855CrossRefGoogle Scholar
  11. 11.
    Karyakin AA, Lukachora LV, Karyakin EE, Orlov AV, Kappachora GP (1999) Anal Commun 36:153CrossRefGoogle Scholar
  12. 12.
    Sun Y, Xia Y (2002) Adv Mater 14:833CrossRefGoogle Scholar
  13. 13.
    Mason MG, Lee ST, Apai S (1980) Chem Phys Lett 76:51CrossRefGoogle Scholar
  14. 14.
    Wertheim GK, DiCenzo SB, Youngquist SE (1983) Phys Rev Lett 51:2310CrossRefGoogle Scholar
  15. 15.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  16. 16.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301CrossRefGoogle Scholar
  17. 17.
    Dixon MC, Daniel TA, Hieda M, Smilgies DM, Chan HW, Allara DL (2007) Langmuir 23:2414CrossRefGoogle Scholar
  18. 18.
    Jaramillo TF, Baeck SH, Cuenya BR, McFarland EW (2003) J Am Chem Soc 125:7148CrossRefGoogle Scholar
  19. 19.
    Sakai N, Fujiwara Y, Aria M, Yu K, Tatsuma T (2009) J Electroanal Chem 628:7CrossRefGoogle Scholar
  20. 20.
    Guo S, Wang E (2007) Anal Chim Acta 598:181CrossRefGoogle Scholar
  21. 21.
    Yu YY, Chang SS, Lee CL, Wang CRC (1997) J Phys Chem B 101:6661CrossRefGoogle Scholar
  22. 22.
    Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Electrochim Acta 53:5848CrossRefGoogle Scholar
  23. 23.
    Daniel MC, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  24. 24.
    Cheng W, Dong S, Wang E (2002) Langmuir 18:9947CrossRefGoogle Scholar
  25. 25.
    Selvakannan PR, Mandal S, Pasricha R, Sastry M (2004) J Colloid Interface Sci 279:124CrossRefGoogle Scholar
  26. 26.
    Mallick K, Witcomb MJ, Scurrell MS (2006) J Mater Sci 41:6189. doi: https://doi.org/10.1007/s10853-006-0019-6 CrossRefGoogle Scholar
  27. 27.
    Smith JA, Josowicz M, Janata J (2003) J Electrochem Soc 150:E384CrossRefGoogle Scholar
  28. 28.
    Saheb A, Smith JA, Josowicz M, Janata J, Baer DR, Engelhard MH (2008) J Electroanal Chem 621:238CrossRefGoogle Scholar
  29. 29.
    Granot E, Katz E, Basnar B, Wliiner I (2005) Chem Mater 17:4600CrossRefGoogle Scholar
  30. 30.
    Hatchett DW, Josowicz M, Janata J (1999) Chem Mater 11:2989CrossRefGoogle Scholar
  31. 31.
    Neoh KG, Young TT, Looi NT, Kang ET, Tan KL (1997) Chem Mater 9:2906CrossRefGoogle Scholar
  32. 32.
    Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Synth Met 36:139CrossRefGoogle Scholar
  33. 33.
    Lux F (1994) Polymer 35:2915CrossRefGoogle Scholar
  34. 34.
    Selvan ST, Nogami M (1998) Mater Sci Lett 17:1385CrossRefGoogle Scholar
  35. 35.
    Henry MC, Hsueh CC, Timko BP, Freund MS (2001) J Electrochem Soc 148:D155CrossRefGoogle Scholar
  36. 36.
    Dai X, Tan Y, Xu J (2002) Langmuir 18:9010CrossRefGoogle Scholar
  37. 37.
    Sarma TS, Chowdhary D, Paul A, Chattopadhyay A (2002) Chem Commun 1048Google Scholar
  38. 38.
    Kinyanjui JM, Hatchett DW, Smith JA, Josowicz M (2004) Chem Mater 16:3390CrossRefGoogle Scholar
  39. 39.
    Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2005) Macromol Rapid Commun 26:232CrossRefGoogle Scholar
  40. 40.
    Wang Y, Liu Z, Han B, Sun Z, Huang Y, Yang G (2005) Langmuir 21:833CrossRefGoogle Scholar
  41. 41.
    Pillalamarri SK, Blum FD and Bertino (2005) Chem Commun 4584Google Scholar
  42. 42.
    Larosa C, Stura E, Eggenhoffner R, Nicolini C (2009) Materials 2:1193CrossRefGoogle Scholar
  43. 43.
    Martin CR (1994) Science 266:1961CrossRefGoogle Scholar
  44. 44.
    Schonenberger C, Van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Kriiger M, Bachtold A, Huber R, Birk H, Staufer U (1997) J Phys Chem B 101:5497CrossRefGoogle Scholar
  45. 45.
    Rahman A, Sanyal MK, Gangopadhyay R, De A, Das I (2006) Phys Rev B 73:125313CrossRefGoogle Scholar
  46. 46.
    Martin CR (1994) Chem Mater 6:1627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Manoj K. Sharma
    • 1
  • Arvind S. Ambolikar
    • 1
  • Suresh K. Aggarwal
    • 1
    Email author
  1. 1.Fuel Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations