Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics
- 584 Downloads
- 22 Citations
Abstract
Effects of Fe and La addition on the dielectric, ferroelectric, and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5Li0.5TiO3–BaTiO3–Mn ceramics were investigated. Similar to the doping effect in lead-based piezoelectric materials, here the Fe-doped ceramic created a hard effect with an improved mechanical quality factor (Qm) ~ 160, coercive field (Ec) ~ 2.9 kV/mm, decreased dielectric constant \( \left( {\varepsilon_{33}^{T} /\varepsilon_{0} } \right)\sim 80 3, \) and loss (tanδ) ~ 0.024 while the La-doped one indicated a soft feature with improved piezoelectric constant (d33) ~ 184 pC/N, \( \varepsilon_{33}^{T} /\varepsilon_{0} \,\sim { 983}, \) tanδ ~ 0.033, and decreased Ec ~ 2.46 kV/mm. In addition, the temperature dependence of the ferroelectric hysteresis loops and strain response under unipolar electric field was also studied. Around the depolarization temperature Td, large strain value was obtained with the normalized \( d_{33}^{*} \) up to ~1,000 pC/N, which was suggested originated from the development of the short-range order or non-polar phases in the ferroelectric matrix. All these would provide a new way to realize high piezoelectric response for practical application in different temperature scale.
Keywords
BaTiO3 Piezoelectric Property Morphotropic Phase Boundary Bismuth Titanate Mechanical Quality FactorNotes
Acknowledgements
This study was supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 10ZR1422300 and 09520501000), Innovation Program of Shanghai Municipal Education Commission (09YZ151, 11YZ82, 11YZ83, and 11ZZ117), Shanghai Normal University Program (SK201026, PL929 and SK200708), National Natural Science Foundation of China (Grant No. 60807036), and Condensed Physics of Shanghai Normal University (Grant No. DZL712).
References
- 1.Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
- 2.Xu Y (1991) Ferroelectric materials and their applications. North-Holland Elsevier Science, AmsterdamGoogle Scholar
- 3.Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003, Official Journal of the European Union 2003, p. L37/19Google Scholar
- 4.Rödel J, Jo W, Seifert TPK, Anton EM, Granzow T, Damjanovic D (2009) J Am Ceram Soc 92:1153CrossRefGoogle Scholar
- 5.Zhang ST, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D (2009) Adv Mater 21:4716CrossRefGoogle Scholar
- 6.Liu WF, Ren XB (2009) Phys Rev Lett 103:257602CrossRefGoogle Scholar
- 7.Takenaka T, Nagata H, Hiruma Y (2008) Jpn J Appl Phys 47:3787CrossRefGoogle Scholar
- 8.Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) J Appl Phys 105:094102CrossRefGoogle Scholar
- 9.Shrout TR, Zhang SJ (2007) J Electroceram 19:111CrossRefGoogle Scholar
- 10.Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) Sov Phys-Solid State (Engl Transl) 2:2651Google Scholar
- 11.Zvirgzds JA, Kapostis PP, Zvirgzde JV (1982) Ferroelectrics 40:75CrossRefGoogle Scholar
- 12.Jones GO, Thomas PA (2002) Acta Crystallogr B 58:168CrossRefGoogle Scholar
- 13.Jones GO, Thomas PA (2000) Acta Crystallogr B 56:426CrossRefGoogle Scholar
- 14.Nagata H, Yoshida M, Makiuchi Y, Takenaka T (2003) Jpn J Appl Phys 42:7401CrossRefGoogle Scholar
- 15.Wang XX, Choy SH, Tang XG, Chan HLW (2005) J Appl Phys 97:104101CrossRefGoogle Scholar
- 16.Shieh J, Wu KC, Chen CS (2007) Acta Mater 55:3081CrossRefGoogle Scholar
- 17.Lin DM, Kwok KW, Chan HLW (2007) Solid State Ionics 178:1930Google Scholar
- 18.Yilmaz H, Trolier-Mckinstry S, Messing GL (2003) J Electroceram 11:217CrossRefGoogle Scholar
- 19.Morozov MI, Damjanovic D (2008) J Appl Phys 104:034107CrossRefGoogle Scholar
- 20.Morozov MI, Damjanovic D (2010) J Appl Phys 107:034106CrossRefGoogle Scholar
- 21.Viehland D (2006) J Am Ceram Soc 89:775CrossRefGoogle Scholar
- 22.Jo W, Erdem E, Eichel RA, Glaum J, Granzow T, Damjanovic D, Rödel J (2010) J Appl Phys 108:014110CrossRefGoogle Scholar
- 23.Li JM, Wang FF, Qin XM, Xu M, Tang YX, Shi WZ (under review) J Alloy CompdGoogle Scholar
- 24.Zhang ST, Kounga AB, Aulbach E, Deng Y (2008) J Am Ceram Soc 91:3950CrossRefGoogle Scholar
- 25.Smolenskii GA (1970) Jpn J Phys Soc Suppl 28:26Google Scholar
- 26.Guo YP, Liu Y, Withers RL, Brink F, Chen H (2011) Chem Mater 23:219CrossRefGoogle Scholar
- 27.Shannon RD (1976) Acta Crystallogr A A32:751CrossRefGoogle Scholar
- 28.Zhang ST, Kounga AB, Aulbach E, Granzow T, Jo W, Kleebe HJ, Rödel J (2008) J Appl Phys 10:034107CrossRefGoogle Scholar
- 29.Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Appl Phys Lett 92:262904CrossRefGoogle Scholar
- 30.Eerd BW, Damjanovic D, Klein N, Setter N, Trodahl J (2010) Phys Rev B 82:104112CrossRefGoogle Scholar
- 31.Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2010) Sens Actuators A 158:84CrossRefGoogle Scholar