Journal of Materials Science

, Volume 46, Issue 17, pp 5702–5708 | Cite as

Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics

  • Jiaming Li
  • Feifei WangEmail author
  • Chung Ming Leung
  • Siu Wing Or
  • Yanxue Tang
  • Xinman Chen
  • Tao Wang
  • Xiaomei Qin
  • Wangzhou Shi


Effects of Fe and La addition on the dielectric, ferroelectric, and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5Li0.5TiO3–BaTiO3–Mn ceramics were investigated. Similar to the doping effect in lead-based piezoelectric materials, here the Fe-doped ceramic created a hard effect with an improved mechanical quality factor (Qm) ~ 160, coercive field (Ec) ~ 2.9 kV/mm, decreased dielectric constant \( \left( {\varepsilon_{33}^{T} /\varepsilon_{0} } \right)\sim 80 3, \) and loss (tanδ) ~ 0.024 while the La-doped one indicated a soft feature with improved piezoelectric constant (d33) ~ 184 pC/N, \( \varepsilon_{33}^{T} /\varepsilon_{0} \,\sim { 983}, \) tanδ ~ 0.033, and decreased Ec ~ 2.46 kV/mm. In addition, the temperature dependence of the ferroelectric hysteresis loops and strain response under unipolar electric field was also studied. Around the depolarization temperature Td, large strain value was obtained with the normalized \( d_{33}^{*} \) up to ~1,000 pC/N, which was suggested originated from the development of the short-range order or non-polar phases in the ferroelectric matrix. All these would provide a new way to realize high piezoelectric response for practical application in different temperature scale.


BaTiO3 Piezoelectric Property Morphotropic Phase Boundary Bismuth Titanate Mechanical Quality Factor 



This study was supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 10ZR1422300 and 09520501000), Innovation Program of Shanghai Municipal Education Commission (09YZ151, 11YZ82, 11YZ83, and 11ZZ117), Shanghai Normal University Program (SK201026, PL929 and SK200708), National Natural Science Foundation of China (Grant No. 60807036), and Condensed Physics of Shanghai Normal University (Grant No. DZL712).


  1. 1.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  2. 2.
    Xu Y (1991) Ferroelectric materials and their applications. North-Holland Elsevier Science, AmsterdamGoogle Scholar
  3. 3.
    Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003, Official Journal of the European Union 2003, p. L37/19Google Scholar
  4. 4.
    Rödel J, Jo W, Seifert TPK, Anton EM, Granzow T, Damjanovic D (2009) J Am Ceram Soc 92:1153CrossRefGoogle Scholar
  5. 5.
    Zhang ST, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D (2009) Adv Mater 21:4716CrossRefGoogle Scholar
  6. 6.
    Liu WF, Ren XB (2009) Phys Rev Lett 103:257602CrossRefGoogle Scholar
  7. 7.
    Takenaka T, Nagata H, Hiruma Y (2008) Jpn J Appl Phys 47:3787CrossRefGoogle Scholar
  8. 8.
    Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) J Appl Phys 105:094102CrossRefGoogle Scholar
  9. 9.
    Shrout TR, Zhang SJ (2007) J Electroceram 19:111CrossRefGoogle Scholar
  10. 10.
    Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) Sov Phys-Solid State (Engl Transl) 2:2651Google Scholar
  11. 11.
    Zvirgzds JA, Kapostis PP, Zvirgzde JV (1982) Ferroelectrics 40:75CrossRefGoogle Scholar
  12. 12.
    Jones GO, Thomas PA (2002) Acta Crystallogr B 58:168CrossRefGoogle Scholar
  13. 13.
    Jones GO, Thomas PA (2000) Acta Crystallogr B 56:426CrossRefGoogle Scholar
  14. 14.
    Nagata H, Yoshida M, Makiuchi Y, Takenaka T (2003) Jpn J Appl Phys 42:7401CrossRefGoogle Scholar
  15. 15.
    Wang XX, Choy SH, Tang XG, Chan HLW (2005) J Appl Phys 97:104101CrossRefGoogle Scholar
  16. 16.
    Shieh J, Wu KC, Chen CS (2007) Acta Mater 55:3081CrossRefGoogle Scholar
  17. 17.
    Lin DM, Kwok KW, Chan HLW (2007) Solid State Ionics 178:1930Google Scholar
  18. 18.
    Yilmaz H, Trolier-Mckinstry S, Messing GL (2003) J Electroceram 11:217CrossRefGoogle Scholar
  19. 19.
    Morozov MI, Damjanovic D (2008) J Appl Phys 104:034107CrossRefGoogle Scholar
  20. 20.
    Morozov MI, Damjanovic D (2010) J Appl Phys 107:034106CrossRefGoogle Scholar
  21. 21.
    Viehland D (2006) J Am Ceram Soc 89:775CrossRefGoogle Scholar
  22. 22.
    Jo W, Erdem E, Eichel RA, Glaum J, Granzow T, Damjanovic D, Rödel J (2010) J Appl Phys 108:014110CrossRefGoogle Scholar
  23. 23.
    Li JM, Wang FF, Qin XM, Xu M, Tang YX, Shi WZ (under review) J Alloy CompdGoogle Scholar
  24. 24.
    Zhang ST, Kounga AB, Aulbach E, Deng Y (2008) J Am Ceram Soc 91:3950CrossRefGoogle Scholar
  25. 25.
    Smolenskii GA (1970) Jpn J Phys Soc Suppl 28:26Google Scholar
  26. 26.
    Guo YP, Liu Y, Withers RL, Brink F, Chen H (2011) Chem Mater 23:219CrossRefGoogle Scholar
  27. 27.
    Shannon RD (1976) Acta Crystallogr A A32:751CrossRefGoogle Scholar
  28. 28.
    Zhang ST, Kounga AB, Aulbach E, Granzow T, Jo W, Kleebe HJ, Rödel J (2008) J Appl Phys 10:034107CrossRefGoogle Scholar
  29. 29.
    Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Appl Phys Lett 92:262904CrossRefGoogle Scholar
  30. 30.
    Eerd BW, Damjanovic D, Klein N, Setter N, Trodahl J (2010) Phys Rev B 82:104112CrossRefGoogle Scholar
  31. 31.
    Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2010) Sens Actuators A 158:84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jiaming Li
    • 1
  • Feifei Wang
    • 1
    Email author
  • Chung Ming Leung
    • 2
  • Siu Wing Or
    • 2
  • Yanxue Tang
    • 1
  • Xinman Chen
    • 1
  • Tao Wang
    • 1
  • Xiaomei Qin
    • 1
  • Wangzhou Shi
    • 1
  1. 1.Key Laboratory of Optoelectronic Material and DeviceMathematics & Science College, Shanghai Normal UniversityShanghaiChina
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations