Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5672–5679 | Cite as

Self-assembly and alignment of semiconductor nanoparticles on cellulose nanocrystals

  • Sonal PadalkarEmail author
  • Jeff R. Capadona
  • Stuart J. Rowan
  • Christoph Weder
  • Robert J. Moon
  • Lia A. Stanciu
Article

Abstract

The synthesis of cadmium sulfide (CdS), zinc sulfide (ZnS), and lead sulfide (PbS) nanoparticle chains on cellulose nanocrystal (CNC) templates can be accomplished by the reaction of the precursor salts. The use of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was critical for the synthesis of well-defined semiconductor nanoparticle chains on the surface of the CNCs. The semiconductor nanoparticle particle size and packing density on CNC surface could be controlled by the variation of the precursor concentration and the pH of the salt solution.

Keywords

CTAB High Resolution Transmission Electron Microscopy Critical Micelle Concentration High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Image 

Notes

Acknowledgements

The authors are grateful for the financial support provided by the US Forest Services and NSF DMR#0804874. Christoph Weder acknowledges support from the Adolphe Merkle Foundation.

References:

  1. 1.
    Cui Y, Lieber CM (2001) Science 291:851CrossRefGoogle Scholar
  2. 2.
    Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Nature 409:66CrossRefGoogle Scholar
  3. 3.
    Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Science 294:1313CrossRefGoogle Scholar
  4. 4.
    Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Nature 421:241. doi: https://doi.org/10.1038/Nature01353 CrossRefGoogle Scholar
  5. 5.
    Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479. doi: https://doi.org/10.1021/cr900339w CrossRefGoogle Scholar
  6. 6.
    Eichhorn SJ, Dufresne A, Aranguren M et al (2010) J Mater Sci 45:1. doi: https://doi.org/10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  7. 7.
    Masa S, Alloin F, Dufresne A (2005) Biomacromolecules 6:612. doi: https://doi.org/10.1021/Bm0493685 CrossRefGoogle Scholar
  8. 8.
    Son WK, Youk JH, Park WH (2006) Carbohydr Polym 65:430CrossRefGoogle Scholar
  9. 9.
    Shin Y, Bae IT, Arey BW, Exarhos GJ (2008) J Phys Chem C 112:4844CrossRefGoogle Scholar
  10. 10.
    Shin Y, Bae IT, Arey BW, Exarhos GJ (2007) Mater Lett 61:3215CrossRefGoogle Scholar
  11. 11.
    Cai J, Kimura S, Wada M, Kuga S (2009) Biomacromolecules 10:87CrossRefGoogle Scholar
  12. 12.
    He JH, Kunitake T, Nakao A (2003) Chem Mater 15:4401CrossRefGoogle Scholar
  13. 13.
    Maneerung T, Tokura S, Rujiravanit R (2008) Carbohydr Polym 72:43CrossRefGoogle Scholar
  14. 14.
    Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Moon R, Stanciu L (2010) Langmuir 26:8497. doi: https://doi.org/10.1021/la904439p CrossRefGoogle Scholar
  15. 15.
    Horne WS, Stout CD, Ghadiri MR (2003) J Am Chem Soc 125:9372. doi: https://doi.org/10.1021/Ja034358h CrossRefGoogle Scholar
  16. 16.
    Serio TR, Cashikar AG, Kowal AS et al (2000) Science 289:1317CrossRefGoogle Scholar
  17. 17.
    Scheibel T, Lindquist SL (2001) Nat Struct Biol 8:958CrossRefGoogle Scholar
  18. 18.
    DePace AH, Weissman JS (2002) Nat Struct Biol 9:389. doi: https://doi.org/10.1038/Nsb786 Google Scholar
  19. 19.
    Ma RM, Dai L, Huo HB et al (2006) Appl Phys Lett 89:203120. doi: https://doi.org/10.1063/1.2387982 CrossRefGoogle Scholar
  20. 20.
    Milliron DJ, Hughes SM, Cui Y et al (2004) Nature 430:190. doi: https://doi.org/10.1038/Nature02695 CrossRefGoogle Scholar
  21. 21.
    Borchert H, Dorfs D, McGinley C et al (2003) J Phys Chem B 107:7486. doi: https://doi.org/10.1021/Jp027485t CrossRefGoogle Scholar
  22. 22.
    Zhang DB, Qi LM, Cheng HM, Ma JM (2002) J Colloid Interface Sci 246:413. doi: https://doi.org/10.1006/jcis.2001.8081 CrossRefGoogle Scholar
  23. 23.
    Yin LW, Bando Y, Zhan JH, Li MS, Golberg D (2005) Adv Mater 17:1972. doi: https://doi.org/10.1002/adma.200401839 CrossRefGoogle Scholar
  24. 24.
    Ma C, Moore D, Li J, Wang ZL (2003) Adv Mater 15:228CrossRefGoogle Scholar
  25. 25.
    Dong LQ, Hollis T, Connolly BA, Wright NG, Horrocks BR, Houlton A (2007) Adv Mater 19:1748. doi: https://doi.org/10.1002/adma.200602543 CrossRefGoogle Scholar
  26. 26.
    Mao CB, Solis DJ, Reiss BD et al (2004) Science 303:213CrossRefGoogle Scholar
  27. 27.
    Huang Y, Chiang CY, Lee SK et al (2005) Nano Lett 5:1429. doi: https://doi.org/10.1021/Nl050795d CrossRefGoogle Scholar
  28. 28.
    van den Berg O, Schroeter M, Capadona JR, Weder C (2007) J Mater Chem 17:2746. doi: https://doi.org/10.1039/B700878c CrossRefGoogle Scholar
  29. 29.
    Mendez JD, Weder C (2010) Polym Chem 1:1237. doi: https://doi.org/10.1039/c0py00118j CrossRefGoogle Scholar
  30. 30.
    Padalkar S, Hulleman JD, Kim SM, Rochet JC, Stach EA, Stanciu LA (2008) Nanotechnology 19:275602. doi: https://doi.org/10.1088/0957-4484/19/27/275602 CrossRefGoogle Scholar
  31. 31.
    van den Berg O, Capadona JR, Weder C (2007) Biomacromolecules 8:1353. doi: https://doi.org/10.1021/Bm061104q CrossRefGoogle Scholar
  32. 32.
    Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A Physicochem Eng Asp 142:75CrossRefGoogle Scholar
  33. 33.
    Wang Z, Liu J, Chen X, Wan J, Qian Y (2005) Chem Eur J 11:160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sonal Padalkar
    • 1
    • 2
    Email author
  • Jeff R. Capadona
    • 3
    • 4
    • 5
  • Stuart J. Rowan
    • 4
    • 5
    • 6
  • Christoph Weder
    • 5
    • 6
    • 7
  • Robert J. Moon
    • 1
    • 2
    • 8
  • Lia A. Stanciu
    • 1
    • 2
  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.Rehabilitation Research and DevelopmentLouis Stokes Cleveland DVA Medical CenterClevelandUSA
  4. 4.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  5. 5.Department of Macromolecular Science and EngineeringCase Western Reserve UniversityClevelandUSA
  6. 6.Department of ChemistryCase Western Reserve UniversityClevelandUSA
  7. 7.Adolphe Merkle Institute and Fribourg Center for NanomaterialsUniversity of FribourgFribourgSwitzerland
  8. 8.US Forest ServiceForest Products LaboratoryMadisonUSA

Personalised recommendations