Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5665–5671 | Cite as

Enlargement of diatom frustules pores by hydrofluoric acid etching at room temperature

  • Deyuan Zhang
  • Yu WangEmail author
  • Wenqiang Zhang
  • Junfeng Pan
  • Jun CaiEmail author
Article

Abstract

Based on the fact that SiO2 can dissolve in HF solution, three kinds of diatom frustules were treated with 1% HF solution at room temperature. Given the proper reaction times (0–2 h for the diatoms Coscinodiscus and Navicula, and 0–3 h for the diatom Melosira), the size of the pores on the frustules gradually increased and the structures of the frustules remained. While HF treatment does not affect the composition, chemical bonds, or photoluminescence signature of the diatom frustules, the treatment reduces their surface areas. This method may be beneficial to diatom studies, diatom nanotechnology, and diatom device applications that make use of diatom pores.

Keywords

Navicula Diatom Frustule Diatom Valve Pore Enlargement Photoluminescence Signature 

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (No. 50805005), the 863 Project of China (No. 2007AA04Z353, 2009AA043804), and the Innovation Fund Project for Graduate Student of Beihang University.

References

  1. 1.
    Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Werner D (1977) The biology of diatoms. Blackwell, OxfordGoogle Scholar
  3. 3.
    Street-Perrott FA, Barker PA (2008) Earth Surf Proc Land 33:1436CrossRefGoogle Scholar
  4. 4.
    Parkinson J, Gordon R (1999) Trends Biotechnol 17:190CrossRefGoogle Scholar
  5. 5.
    Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) Trends Biotechnol 27:116CrossRefGoogle Scholar
  6. 6.
    Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Nature 421:841CrossRefGoogle Scholar
  7. 7.
    Crawford SA, Chiovitti A, Pickett-Heaps J, Wetherbee R (2009) J Phycol 45:1353CrossRefGoogle Scholar
  8. 8.
    Losic D, Mitchell JG, Lal R, Voelcker NH (2007) Adv Funct Mater 17:2439CrossRefGoogle Scholar
  9. 9.
    Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Ind Eng Chem Res 48:8769CrossRefGoogle Scholar
  10. 10.
    Poulsen N, Berne C, Spain J, Kroger N (2007) Angew Chem-Int Edit 46:1843CrossRefGoogle Scholar
  11. 11.
    De Stefano L, Maddalena P, Moretti L, Rea I, Rendina I, De Tommasi E, Mocella V, De Stefano M (2009) Superlattices Microstruct 46:84CrossRefGoogle Scholar
  12. 12.
    De Stefano M, De Stefano L, Congestri R (2009) Superlattices Microstruct 46:64CrossRefGoogle Scholar
  13. 13.
    Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) ACS Nano 2:2103CrossRefGoogle Scholar
  14. 14.
    Drum RW, Gordon R (2003) Trends Biotechnol 21:325CrossRefGoogle Scholar
  15. 15.
    De Stefano M, De Stefano L (2005) J Nanosci Nanotechnol 5:15–24CrossRefGoogle Scholar
  16. 16.
    Umemura K, Yamada T, Maeda Y, Kobayashi K, Kuroda R, Mayama S (2007) J Nanobiotechnol 5:2CrossRefGoogle Scholar
  17. 17.
    Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) J Biotechnol 70:249–270CrossRefGoogle Scholar
  18. 18.
    Dudley S, Kalem T, Akinc M (2006) J Am Ceram Soc 89:2434–2439CrossRefGoogle Scholar
  19. 19.
    Shian S, Cai Y, Weatherspoon MR, Allan SM, Sandhage KH (2006) J Am Ceram Soc 89:694–698CrossRefGoogle Scholar
  20. 20.
    Bao ZH, Ernst EM, Yoo S, Sandhage KH (2009) Adv Mater 21:474–478CrossRefGoogle Scholar
  21. 21.
    Toster J, Iyer KS, Burtovyy R, Burgess SSO, Luzinov IA, Raston CL (2009) J Am Chem Soc 131:8356–8357CrossRefGoogle Scholar
  22. 22.
    Zhang DY, Wang Y, Pan JF, Cai J (2010) J Mater Sci 45:5736–5741. doi: https://doi.org/10.1007/s10853-010-4642-x CrossRefGoogle Scholar
  23. 23.
    Wang W, Gutu T, Gale DK, Jiao J, Rorrer GL, Chang CH (2009) J Am Chem Soc 131:4178–4179CrossRefGoogle Scholar
  24. 24.
    Umemura K, Noguchi Y, Ichinose T, Hirose Y, Kuroda R, Mayama S (2008) J Biol Phys 34:189–196CrossRefGoogle Scholar
  25. 25.
    De Stefano L, Rendina I, De Stefano M, Bismuto A, Maddalena P (2005) Appl Phys Lett 87:233902–233903CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bionic and Micro/Nano/Bio Manufacturing Technology Research CenterSchool of Mechanical Engineering and Automation, Beihang UniversityBeijingPeople’s Republic of China

Personalised recommendations