Journal of Materials Science

, Volume 46, Issue 17, pp 5657–5664 | Cite as

Impact of sulfate and nitrate incorporation on potassium- and sodium-based geopolymers: geopolymerization and materials properties

  • Charlene Desbats-Le Chequer
  • Fabien FrizonEmail author


One of the most promising applications of geopolymers is their use as a waste encapsulating matrix. These binders are indeed compatible with aqueous waste streams and capable of activating several chemical and physical immobilization mechanisms for a wide range of inorganic waste species. Several works have investigated the immobilization of cations, mainly heavy metals or radioactive wastes, but very few studies have taken counterions, namely anions, into account. This work is an experimental investigation of the impact of anions with different valences on the material properties in regard to the requirements of an industrial process at ambient or slightly elevated temperature, including the setting time, maximum achievable compressive strength, or resistance to leaching. The modifications caused by the introduction of monovalent and divalent anions, such as sulfate and nitrate, are also evaluated in term of mineralogy, porosity, and microstructure. Their immobilization appears to be related to the progress of the geopolymerization reaction. Moreover, depending on the alkali ions used in the activation solution, the anionic species considered may also enhance the precipitation of some zeolites.


Zeolite Geopolymer Hydration Energy Hydration Sphere Potassium Sulfate 


  1. 1.
    Davidovits J (1991) J Therm Anal 37:1633CrossRefGoogle Scholar
  2. 2.
    Palomo A, Palacios M (2003) Cem Concr Res 33(2):289CrossRefGoogle Scholar
  3. 3.
    Fernandez Jiminez AM, Lachowski EE, Palomo A, Macphee DE (2004) Cem Concr Compos 26(8):1001CrossRefGoogle Scholar
  4. 4.
    Fernandez-Jimenez A, Macphee DE, Lachowski EE, Palomo A (2005) J Nucl Mater 346(2–3):185CrossRefGoogle Scholar
  5. 5.
    Berger S, Frizon F, Joussot-Dubien C (2009) Adv Appl Ceram 108(7):412CrossRefGoogle Scholar
  6. 6.
    Xu JZ, Zhou YL, Chang Q, Qu HQ (2006) Mater Lett 60(6):820CrossRefGoogle Scholar
  7. 7.
    Fernandez-Jimenez A, Palomo A, Criado M (2005) Cem Concr Res 35(6):1204CrossRefGoogle Scholar
  8. 8.
    Fletcher RA, MacKenzie KJD, Nicholson CL, Shimada S (2005) J Eur Ceram Soc 25(9):1471CrossRefGoogle Scholar
  9. 9.
    Fernandez-Jimenez A, Palomo A (2005) Cem Concr Res 35(10):1984CrossRefGoogle Scholar
  10. 10.
    Murayama N, Yamamoto H, Shibata J (2002) Int J Min Process 64:1CrossRefGoogle Scholar
  11. 11.
    Inada M, Eguchi Y, Enomoto N, Hojo J (2005) Fuel 84(2–3):299CrossRefGoogle Scholar
  12. 12.
    Provis JL, Lukey GC, Van Deventer JSJ (2005) Chem Mater 17:3075CrossRefGoogle Scholar
  13. 13.
    Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW (1999) Cem Concr Res 29(7):997CrossRefGoogle Scholar
  14. 14.
    Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2002) Chem Eng J 89:63CrossRefGoogle Scholar
  15. 15.
    Rowles M, O’Connor B (2003) J Mater Chem 13(5):1161CrossRefGoogle Scholar
  16. 16.
    Palomo A, Lopez dela Fuente JI (2003) Cem Concr Res 33(2):281CrossRefGoogle Scholar
  17. 17.
    Xu H, van Deventer JSJ (2000) Int J Min Process 59:247CrossRefGoogle Scholar
  18. 18.
    Kriven WM, Gordon M, Bell J (2004) In: Microscopy and microanalysis’04 (Proceedings of 62nd annual meeting of microscopy society of America), p 404Google Scholar
  19. 19.
    LaRosa JL, Kwan S, Grutzeck MW (1992) J Am Ceram Soc 75:1574CrossRefGoogle Scholar
  20. 20.
    McCormick AV, Bell AT (1989) Catalunya Rev Sci Eng 31(1–2):97CrossRefGoogle Scholar
  21. 21.
    Breck DW (1974) Zeolite molecular sieves: structure chemistry and use. Wiley, New YorkGoogle Scholar
  22. 22.
    De Silva P, Sagoe-Crenstil K (2008) Cem Concr Res 38(6):870CrossRefGoogle Scholar
  23. 23.
    Criado M, Fernandez-Jimenez A, de la Torre AG, Aranda MAG, Palomo A (2007) Cem Concr Res 37:671CrossRefGoogle Scholar
  24. 24.
    Cau Dit Coumes C, Courtois S (2003) Cem Concr Res 33(3):305CrossRefGoogle Scholar
  25. 25.
    Kumar R, Bhaumik A, Kaur R, Gamapathy S (1996) Nature 381:298CrossRefGoogle Scholar
  26. 26.
    Lee WKW, Van Deventer JSJ (2002) Cem Concr Res 32:577CrossRefGoogle Scholar
  27. 27.
    Lee WKW, Van Deventer JSJ (2002) Ind Eng Chem Res 41:4550CrossRefGoogle Scholar
  28. 28.
    Lee WKW, Van Deventer JSJ (2002) Colloids Surf A 211:115CrossRefGoogle Scholar
  29. 29.
    Criado M, Fernandez-Jimenez A, Palomo A (2010) Cem Concr Compos 32:589CrossRefGoogle Scholar
  30. 30.
    Yip CK, Lukey GC, van Deventer JSJ (2005) Cem Concr Res 35(9):1688CrossRefGoogle Scholar
  31. 31.
    Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2(4):309CrossRefGoogle Scholar
  32. 32.
    Singh PS, Trigg M, Burgar I, Bastow T (2005) Mater Sci Eng A 396:392CrossRefGoogle Scholar
  33. 33.
    Kindare SD, Pole DL (1992) Inorg Chem 31:4558CrossRefGoogle Scholar
  34. 34.
    Wang L, Shao Y, Zhang J, Anpo M (2006) Microporous Mesoporous Mater 95(1–3):17CrossRefGoogle Scholar
  35. 35.
    Tòth G (1996) J Chem Phys 105(13):5518CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Waste Treatment and Conditioning Research DepartmentAtomic Energy and Alternative Energies Commission, DEN MarcouleBagnols-sur-CèzeFrance

Personalised recommendations