Advertisement

Journal of Materials Science

, Volume 46, Issue 17, pp 5645–5656 | Cite as

A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material

  • Yi SongEmail author
  • Yuanyuan Li
  • Zhaoyao Zhou
  • Yangen Lai
  • Yongquan Ye
Article

Abstract

A mechanical constitutive model of powder material is introduced to a fully coupled thermal–electric–mechanical finite element model to simulate the one-step-forming spark plasma sintering (SPS) process of metal powders. The effects of displacement field and local density distribution on sintering are considered in this article, which are generally neglected in the existing SPS models. The mechanical, thermal, and electrical parameters of powders are assumed as functions of local relative density and temperature. The simulated varying displacement field remodels the distributions of temperature and electric potential by changing the contact thermoelectric resistances. For the 20, 40, and 60 MPa external pressures, the simulation indicates that the sintering temperature and the temperature gradient within powders are decreased by enhancing the external pressure, and the comprehensive effect of stress promotes the densification of the colder regions. Thus, the interrelationship between the temperature gradient and the intrinsic stress distribution plays an important role in the densification mechanism of SPS powders.

Keywords

Displacement Field Spark Plasma Sinter Powder Material Finite Element Method Model Contact Thermal Resistance 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant no. 50325516) and the Fundamental Research Funds for the Central Universities, SCUT (Grant no. 2009ZM0040).

References

  1. 1.
    Langer J, Hoffmann MJ, Guillon O (2009) Acta Mater 57:5454CrossRefGoogle Scholar
  2. 2.
    Zavaliangos A, Zhang J, Krammer M, Groza JR (2004) Mater Sci Eng A 379:218. doi: https://doi.org/10.1016/j.msea.2004.01.052 CrossRefGoogle Scholar
  3. 3.
    Tiwari D, Basu B, Biswas K (2009) Ceramics Int 35:699. doi: https://doi.org/10.1016/j.ceramint.2008.02.013 CrossRefGoogle Scholar
  4. 4.
    Maizza G, Grasso S, Sakka Y (2009) J Mater Sci 44:1219. doi: https://doi.org/10.1007/s10853-008-3179-8 CrossRefGoogle Scholar
  5. 5.
    Yang J, Li Y, Li X, Guo L, Chen W (2007) Special Cast Nonferrous Alloy 27:24 In ChineseGoogle Scholar
  6. 6.
    Liu X-M, Song X-Y, Zhang J-X, Zhao S-X, Wei J (2008) Chinese J Nonferrous Metal 18:221 In ChineseGoogle Scholar
  7. 7.
    Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Mater Sci Eng A 488:333. doi: https://doi.org/10.1016/j.msea.2007.11.054 CrossRefGoogle Scholar
  8. 8.
    Vanmeensel K, Laptev A, Van der Biest O, Vleugels J (2007) J Euro Ceramic Soc 27:979. doi: https://doi.org/10.1016/j.jeurceramsoc.2006.04.142 CrossRefGoogle Scholar
  9. 9.
    Wang X, Casolco SR, Xu G, Garay JE (2007) Acta Mater 55:3611CrossRefGoogle Scholar
  10. 10.
    McWilliams B, Zavaliangos A (2008) J Mater Sci 43:5031. doi: https://doi.org/10.1007/s10853-008-2744-5 CrossRefGoogle Scholar
  11. 11.
    Grasso S, Sakka Y, Maizza G, Hu C (2009) J Am Ceram Soc 92:2418CrossRefGoogle Scholar
  12. 12.
    Matsugi K, Kuramoto H, Yanagisawa O, Kiritani M (2003) Mater Sci Eng A 354:234. doi: https://doi.org/10.1016/s0921-5093(03)00012-1 CrossRefGoogle Scholar
  13. 13.
    Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Mater Sci Eng A 394:139. doi: https://doi.org/10.1016/j.msea.2004.11.019 CrossRefGoogle Scholar
  14. 14.
    Wang D, Wu Y, Jiao M, Yu J, Xie T, Yin Y (2008) Powder Metall Technol 26:88 In ChineseGoogle Scholar
  15. 15.
    Montes JM, Cuevas FG, Cintas J (2007) Metall Mater Trans B Proc Metall Mater Proc Sci 38:957CrossRefGoogle Scholar
  16. 16.
    Doraivelu SM, Gegel HL, Gunasekera JS, Malas JC, Morgan JT, Thomas JF Jr (1984) Int J Mech Sci 26:527. doi: https://doi.org/10.1016/0020-7403(84)90006-7 CrossRefGoogle Scholar
  17. 17.
    Li Y-Y, Zhao W-B, Zhou Z-Y, Chen P-Q (2006) Trans Nonferrous Metal Soc China (English Edition) 16:311CrossRefGoogle Scholar
  18. 18.
    Li Y-y, Chen P-q, Xia W, Zhou Z-y, Li W-f (2006) Trans Nonferrous Metal Soc China 16:507. doi: https://doi.org/10.1016/s1003-6326(06)60088-5 CrossRefGoogle Scholar
  19. 19.
    Song Y, Li Y-Y, Zhou Z-Y, Zheng Z-X, Chen P-Q (2010) Trans Nonferrous Metals Soc China (English Edition) 20:1470CrossRefGoogle Scholar
  20. 20.
    Kim HS, Lee DN (1999) Mater Sci Eng A 271:424. doi: https://doi.org/10.1016/s0921-5093(99)00279-8 CrossRefGoogle Scholar
  21. 21.
    Wikman B, Svoboda A, Haggblad HA (2000) Comput Method Appl Mech Eng 189:901CrossRefGoogle Scholar
  22. 22.
    Zhang J, Zavaliangos A, Kraemer M, Groza J (2002) In: Proceedings of a symposium on modelling the performance of engineering structural materials III, Minerals, Metals and Materials Society, ColumbusGoogle Scholar
  23. 23.
    Wang C, Cheng L, Zhao Z (2010) Comput Mater Sci 49:351. doi: https://doi.org/10.1016/j.commatsci.2010.05.021 CrossRefGoogle Scholar
  24. 24.
    Conway JJ, Nettleship I, McAfee RJ, Loehlein ES (2002) In: Advance in powder metallurgy and particulate materials 2002, vol 9. (published by MPIF)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yi Song
    • 1
    Email author
  • Yuanyuan Li
    • 1
  • Zhaoyao Zhou
    • 1
  • Yangen Lai
    • 1
  • Yongquan Ye
    • 1
  1. 1.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations