Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5587–5594 | Cite as

Mechanical properties of C/C composites processed by wet impregnation and P-CVI methods

  • J. Michalowski
  • D. Mikociak
  • K. J. Konsztowicz
  • S. BlazewiczEmail author
Article

Abstract

Wet impregnation with phenolic resin and P-CVI methods were used to manufacture C/C composites. The influence of impregnation process of porous 2D carbon fibre substrate with resin and pyrocarbon deposited by CVD technique on mechanical properties of formed composites was studied. The results indicate that using P-CVI method large pores remain in the matrix resulting in lower mechanical strength. This fraction does not undergo any changes during thermal treatment. The flexural modulus of C/C composites depends mainly on the type of reinforcing fibres. The values of moduli measured in composites obtained by both methods do not differ significantly. Comparison of two methods of fabrication of C/C composite show that much better strengths can be achieved by forming the carbon matrix in solid state.

Keywords

Carbon Fibre Apparent Density Carbon Matrix Flexural Modulus Polymer Precursor 

Notes

Acknowledgements

This work was financed by the Faculty of Materials Engineering and Ceramics, Statute Founds, project no. 11.11.160.801

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Savage G (1993) Carbon–carbon composites, 1st edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  2. 2.
    Tzeng SS, Lin WC (1999) Carbon 37:2011CrossRefGoogle Scholar
  3. 3.
    Jin Z, Zhang Z, Meng L (2006) Mater Chem Phys 97:167CrossRefGoogle Scholar
  4. 4.
    Anand K, Gupta V (1995) Carbon 33:739CrossRefGoogle Scholar
  5. 5.
    Takano S, Uruno T, Kinjo T et al (1993) J Mater Sci 28:5610. doi: https://doi.org/10.1007/BF00367837 CrossRefGoogle Scholar
  6. 6.
    WCh Chang, Ma ChChM, Taib NH et al (1994) J Mater Sci 29:5859. doi: https://doi.org/10.1007/BF00366868 CrossRefGoogle Scholar
  7. 7.
    Muller M, Beinborn KM, Huttinger KJ (1995) Carbon 33:1043CrossRefGoogle Scholar
  8. 8.
    Chen T, Liao J, Liu G et al (2003) Carbon 41:993CrossRefGoogle Scholar
  9. 9.
    Tzeng SS, Chr YG (2002) Mater Chem Phys 73:162CrossRefGoogle Scholar
  10. 10.
    Ko TH, Kuo WS, Tzeng SS (2003) Compos Sci Technol 63:1965CrossRefGoogle Scholar
  11. 11.
    Delhaes P (2002) Carbon 40:641CrossRefGoogle Scholar
  12. 12.
    Dupel P, Bourrat X, Pailler R (1995) Carbon 33:1193CrossRefGoogle Scholar
  13. 13.
    Lavenac J, Langlais F, Feron O et al (2001) Compos Sci Technol 61:339CrossRefGoogle Scholar
  14. 14.
    Lucas P, Marchand A (1990) Carbon 28:207CrossRefGoogle Scholar
  15. 15.
    Benzinger W, Becker A, Huttinger J (1996) Carbon 34:957CrossRefGoogle Scholar
  16. 16.
    Blanco C, Casal E, Granda M et al (2003) J Eur Ceram Soc 23:2857CrossRefGoogle Scholar
  17. 17.
    Fitzer E, Shatter W, Yamade S (1969) Carbon 7:643CrossRefGoogle Scholar
  18. 18.
    Chen-Chi M, Tai NH, WCh Chang et al (1996) Carbon 34:1175CrossRefGoogle Scholar
  19. 19.
    Feron O, Langlais F, Naslain R et al (1999) Carbon 37:1343CrossRefGoogle Scholar
  20. 20.
    Zaldivar JR, Rellic GS (1995) J Am Ceram Soc 78(3):623CrossRefGoogle Scholar
  21. 21.
    Glogar P, Manocha LM, Fott P (1996) Carbon 34:1343CrossRefGoogle Scholar
  22. 22.
    Michalowski J, Mikociak D, Konsztowicz KJ et al (2009) J Nucl Mater 393:47CrossRefGoogle Scholar
  23. 23.
    Blazewicz S, Piekarczyk J, Chlopek J et al (2002) Carbon 40:721CrossRefGoogle Scholar
  24. 24.
    Vaidyaraman S, Lackey WJ, Agrawal PK et al (1996) Carbon 34:347CrossRefGoogle Scholar
  25. 25.
    Fitzer E (1987) Carbon 25:163CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://doi.org/creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • J. Michalowski
    • 1
  • D. Mikociak
    • 2
  • K. J. Konsztowicz
    • 3
  • S. Blazewicz
    • 2
    Email author
  1. 1.Institute of Nuclear PhysicsKrakowPoland
  2. 2.Department of Biomaterials, Faculty of Materials Engineering and CeramicsAGH University of Science and TechnologyKrakowPoland
  3. 3.Department of Industrial Engineering, Faculty of Mechanical Engineering, and ITUniversity of Bielsko-BiałaBielsko-BiałaPoland

Personalised recommendations