Journal of Materials Science

, Volume 46, Issue 16, pp 5559–5567 | Cite as

ECAP processing and mechanical milling of Mg and Mg–Ti powders: a comparative study

  • Gülhan Çakmak
  • Tayfur ÖztürkEmail author


A study was carried out into the possibility of employing ECAP processing in lieu of mechanical milling for the purpose of developing powder-based hydrogen storage alloys. Mg and Mg–Ti powder compacts were encapsulated in a copper block and were subjected to ECAP deformation to an apparent strain of ε = 4. This resulted in the consolidation of the compacts as well as in the refinement of their structures. The values of coherently diffracting volume size were as small as 70–80 nm, quite comparable to those achieved with mechanical milling. It is, therefore, concluded that ECAP processing can be employed successfully for the purpose of structural refinement. As for material synthesis, however, the ECAP is less efficient in expanding the interfacial area. Therefore, it is necessary to impose relatively heavy strains to able to achieve comparable expansion in the interfacial area. It appears that an advantage of ECAP deformation is the development of structures which have improved ability for milling. It is, therefore, recommended that in the processing of hydrogen storage alloys, the powder mixtures may be first processed with ECAP in open atmosphere and then by mechanical milling of a short duration carried out under protective atmosphere.


Milling Powder Compact True Strain Equal Channel Angular Pressing Mechanical Milling 



Support for this study was provided by DPT with project number BAP-03-08-DPT.200305K120920-20 and by the FP6 program of the European Commission project (FP6-200-3-518-271), NESSHY, which we gratefully acknowledge.


  1. 1.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  2. 2.
    Pedneault S, Huot J, Roue L (2008) J Power Sour 185:566CrossRefGoogle Scholar
  3. 3.
    Segal VM (1999) Mater Sci Eng A 271:322CrossRefGoogle Scholar
  4. 4.
    Güvendiren M, Baybörü E, Öztürk T (2004) Int J Hydrogen Energy 29:491CrossRefGoogle Scholar
  5. 5.
    Mandzhukova T, Bobet J-L, Khrussanova M, Peshev P (2009) Mater Res Bull 44:1968CrossRefGoogle Scholar
  6. 6.
    Huang JY, Wu YK, Ye HQ (1995) Mater Sci Eng A 199:165CrossRefGoogle Scholar
  7. 7.
    Çakmak G, Károly Z, Mohai I, Öztürk T, Szépvölgyi J (2010) Int J Hydrogen Energy 35:10412CrossRefGoogle Scholar
  8. 8.
    Zaluska A, Zaluski L, Ström–Olsen JO (1999) J Alloy Compd 288:217CrossRefGoogle Scholar
  9. 9.
    Wieczorek AK, Krystian M, Zehetbauer MJ (2006) Solid State Phenom 114:177CrossRefGoogle Scholar
  10. 10.
    Ivey DG, Northwood DO (1983) J Mater Sci 18:321. doi: CrossRefGoogle Scholar
  11. 11.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  12. 12.
    Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mat Res 14:4044CrossRefGoogle Scholar
  13. 13.
    Pushin VG, Stolyarov VV, Valiev RZ, Kourov NI, Kuranova NN, Prokofiev EA, Yurchenko LI (2002) Ann Chim Sci Mater 27:77CrossRefGoogle Scholar
  14. 14.
    Zehetbauer M, Grössinger R, Krenn H, Krystian M, Pippan R, Rogl P, Waitz T, Würschum R (2010) Adv Eng Mater 12:692CrossRefGoogle Scholar
  15. 15.
    Skripnyuk VM, Rabkin E, Estrin Y, Lapovok R (2004) Acta Mater 52:405CrossRefGoogle Scholar
  16. 16.
    Skripnyuk V, Buchman E, Rabkin E, Estrin Y, Popov M, Jorgensen S (2007) J Alloy Compd 436:99CrossRefGoogle Scholar
  17. 17.
    Çakmak G, Bobet J-L, Ölmez R, Öztürk T (2007) In: Proceedings International Hydrogen Energy Congress and Exhibition IHEC, Istanbul, TurkeyGoogle Scholar
  18. 18.
    Loken S, Solberg JK, Maehlen JP, Denys RV, Lototsky MV, Tarasov BP, Yartys VA (2007) J Alloy Compd 446–447:114CrossRefGoogle Scholar
  19. 19.
    Sprinyuk VM, Rabkin E, Estrin Y, Lapovok R (2009) Int J Hydrogen Energy 34:6320CrossRefGoogle Scholar
  20. 20.
    Leiva DR, Fruchart D, Bacia M, Girard G, Skryabina N, Villela ACS, Miraglia S, Santos DS, Botta WJ (2009) Int J Mater Res 100:1739CrossRefGoogle Scholar
  21. 21.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143CrossRefGoogle Scholar
  22. 22.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328CrossRefGoogle Scholar
  23. 23.
    Raab GI (2005) Mater Sci Eng A 410–411:230CrossRefGoogle Scholar
  24. 24.
    Dinkel M, Pyczak F, May J, Höppel HW, Göken M (2008) J Mater Sci 43:7481. doi: CrossRefGoogle Scholar
  25. 25.
    Máthis K, Gubicza J, Nam NH (2005) J Alloy Compd 394:194CrossRefGoogle Scholar
  26. 26.
    Wu HM, Hung SS, Lee PY (2007) J Alloy Compd 434–435:386CrossRefGoogle Scholar
  27. 27.
    Moss M, Lapovok R, Bettles CJ (2007) JOM 59:54CrossRefGoogle Scholar
  28. 28.
    Xia K, Wu X (2005) Scr Mater 53:1225CrossRefGoogle Scholar
  29. 29.
    Quang P, Jeong YG, Yoon SC, Hong SH, Kim HS (2007) J Mater Process Technol 187–188:318CrossRefGoogle Scholar
  30. 30.
    Öztürk T, Mirmesdagh J, Ediz T (1994) Mater Sci Eng A 175:125CrossRefGoogle Scholar
  31. 31.
    Shingu PH, Ishihara KN, Otsuki A, Daigo I (2001) Mater Sci Eng A 304–306:399CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations