Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5541–5545 | Cite as

Effect of heating process on fracture behaviors of Wf/Cu82Al10Fe4Ni4 composites

  • Z. WuEmail author
  • P. C. Kang
  • G. H. Wu
  • Q. Guo
  • Z. Y. Xiu
Article
  • 104 Downloads

Abstract

Wf/Cu82Al10Fe4Ni4(30) composites and Wf/Cu82Al10Fe4Ni4(60) composites were prepared by penetrating casting method. Three-point bending test and dynamic compression test showed that Wf/Cu82Al10Fe4Ni4(30) composites possessed higher mechanical properties than Wf/Cu82Al10Fe4Ni4(60) composites. Microstructure observation of Wf/Cu82Al10Fe4Ni4(30) composites revealed that a small amount of tungsten diffused into the Fe–Ni solid solution precipitated on the surface of tungsten fibers. The damage occurred mainly within the tungsten fibers after three-point bending test and dynamic compression test in Wf/Cu82Al10Fe4Ni4(30) composites, indicating that the composites possessed high interface strength. Dislocation density was high and stacking faults emerged in Wf/Cu82Al10Fe4Ni4(30) composites after dynamic compression. Microstructure observation of Wf/Cu82Al10Fe4Ni4(60) composites revealed that long strip of tungsten grains occurred at the edge of tungsten fibers, within which damage mainly emerged after three-point bending test, indicating that strength of the edge of tungsten fibers was low in Wf/Cu82Al10Fe4Ni4(60) composites. The fibrous structure of tungsten fiber was coarse or even disappeared in some areas, and dislocation density was low in Wf/Cu82Al10Fe4Ni4(60) composites after dynamic compression.

Keywords

Select Area Electron Diffraction Pattern Fibrous Structure Dynamic Compression Interface Strength Interface Microstructure 

References

  1. 1.
    Pappu S, Kennedy C, Murr LE, Magness LS, Kapoor D (1999) Mater Sci Eng A 262:115CrossRefGoogle Scholar
  2. 2.
    Lair S, Randrianarivony FM, Quinones SA, Murr LE (2002) J Mater Sci 37:5197. doi: https://doi.org/10.1023/A:1021083800238 CrossRefGoogle Scholar
  3. 3.
    Liu JX, Li SK, Fan AL, Sun HC (2008) Mater Sci Eng A 487:235CrossRefGoogle Scholar
  4. 4.
    Conner RD, Dandliker RB, Johnson WL (1998) Acta Mater 46:6089CrossRefGoogle Scholar
  5. 5.
    Zhang HF, Li H, Wang AM, Fu HM, Ding BZ, Hu ZQ (2009) Intermetallics 17:1070CrossRefGoogle Scholar
  6. 6.
    Kim HG, Kim KT (2000) Int J Mech Sci 42:1339CrossRefGoogle Scholar
  7. 7.
    Manel RR, Jan O (2009) Eng Fract Mech 76:1485CrossRefGoogle Scholar
  8. 8.
    Schade P (2000) Int J Refract Metals Hard Mater 28:648CrossRefGoogle Scholar
  9. 9.
    Schade P (2006) Int J Refract Metals Hard Mater 24:332CrossRefGoogle Scholar
  10. 10.
    Ma WF, Kou HC, Chen CS, Li JS, Chang H, Zhou L, Fu HZ (2008) Mater Sci Eng A 486:308CrossRefGoogle Scholar
  11. 11.
    Qiu KQ, Wang AM, Zhang HF, Ding BZ, Hua ZQ (2002) Intermetallics 10:1283CrossRefGoogle Scholar
  12. 12.
    Jedamzik R, Neubrand A, Rödel J (2000) J Mater Sci 35:477. doi: https://doi.org/10.1023/A:1004735904984 CrossRefGoogle Scholar
  13. 13.
    Cheng JG, Wan L, Cai YB, Zhu JC, Song P, Dong J (2010) J Mater Process Technol 1:137CrossRefGoogle Scholar
  14. 14.
    Hong SH, Kim BK, Munir ZA (2005) Mater Sci Eng A 405:325CrossRefGoogle Scholar
  15. 15.
    Ibrahim A, Abdallah M, Mostafa SF, Hegazy AA (2009) Mater Des 30:1398CrossRefGoogle Scholar
  16. 16.
    Doré Lay S, Eustathopoulos N, Allibert CH (2003) Scr Mater 49:237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Z. Wu
    • 1
    Email author
  • P. C. Kang
    • 1
  • G. H. Wu
    • 1
  • Q. Guo
    • 1
  • Z. Y. Xiu
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations