Journal of Materials Science

, Volume 46, Issue 13, pp 4435–4457 | Cite as

The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures

  • Ermete AntoliniEmail author
  • Joelma Perez


A resurgence of interest in unsupported catalysts, commonly nanostructured Pt or Pt-based catalysts, for use in low-temperature fuel cells has occurred in recent years: indeed, the use of unsupported nanostructured catalysts may provide improved long-term stability during fuel cell operation compared to the carbon-supported catalysts because the carbon corrosion issue is eliminated. Catalyst utilization can be increased by developing novel nanostructures with high surface area and/or high catalytic activity. Indeed, in recent years, the strategy to increase the catalyst utilization has gone from decreasing the nanoparticle size to tailoring new nanostructures. This work presents an overview of recent studies on novel metal nanostructures for their possible use in low-temperature fuel cells, highlighting that these materials can better perform than the commonly utilized carbon-supported catalysts at similar catalyst loadings, having at the same time a higher stability.


Fuel Cell Oxygen Reduction Reaction Methanol Oxidation Direct Methanol Fuel Cell Oxygen Reduction Reaction Activity 



The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 310151/2008-2) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial assistance to the project.


  1. 1.
    Solid Polymer Electrolyte Fuel Cell Technology Program (1980) In: Test report BU #1 and BU #2 (1.1 ft2). Direct Energy Conversion Programs, General Electric Co., TRP-76 Contract NAS 9-15286Google Scholar
  2. 2.
    Srinivasan S, Ticianelli EA, Derouin CR, Redondo A (1988) J Power Sources 22:359Google Scholar
  3. 3.
    Costamagna P, Srinivasan S (2001) J Power Sources 102:242Google Scholar
  4. 4.
    Wilson MS, Gottesfeld S (1992) J Electrochem Soc 139:L28Google Scholar
  5. 5.
    Wilson MS, Valerio JA, Gottesfeld S (1995) Electrochim Acta 40:355Google Scholar
  6. 6.
    Liu L, Pu G, Viswanathan R, Fan QB, Liu RX, Smotkin ES (1998) Electrochim Acta 43:3657Google Scholar
  7. 7.
    Kangasniemi KH, Condit DA, Jarvi TD (2004) J Electrochem Soc 151:E125Google Scholar
  8. 8.
    Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) J Power Sources 176:444Google Scholar
  9. 9.
    Stevens DA, Dahn JR (2005) Carbon 43:179Google Scholar
  10. 10.
    Antolini E, Gonzalez ER (2009) Solid State Ionics 180:746Google Scholar
  11. 11.
    Ren XM, Wilson MS, Gottesfeld S (1996) J Electrochem Soc 143:L12Google Scholar
  12. 12.
    Aricò AS, Shukla AK, El-Khatib KM, Creti P, Antonucci V (1999) J Appl Electrochem 29:671Google Scholar
  13. 13.
    Chen JY, Lim B, Lee EP, Xia YN (2009) Nano Today 4:81Google Scholar
  14. 14.
    Peng ZM, Yang H (2009) Nano Today 4:143Google Scholar
  15. 15.
    Subhramannia M, Pillai VK (2008) J Mater Chem 18:5858Google Scholar
  16. 16.
    Bing YH, Liu HS, Zhang L, Ghosh D, Zhang JJ (2010) Chem Soc Rev 39:2184Google Scholar
  17. 17.
    Kinoshita K (1990) J Electrochem Soc 137:845Google Scholar
  18. 18.
    Peuckert M, Yoneda T, Della Betta RA, Boudart M (1986) J Electrochem Soc 133:944Google Scholar
  19. 19.
    Sattler ML, Ross PN (1986) Ultramicroscopy 20:21Google Scholar
  20. 20.
    Gamez A, Richard D, Gallezot P, Gloaguen F, Faure R, Durand R (1996) Electrochim Acta 41:307Google Scholar
  21. 21.
    Antoine O, Bultel Y, Durand R (2001) J Electroanal Chem 499:85Google Scholar
  22. 22.
    Takasu Y, Ohashi N, Zhang XG, Murakami Y, Minagawa H, Sato S, Yahikozawa K (1996) Electrochim Acta 41:2595Google Scholar
  23. 23.
    Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163Google Scholar
  24. 24.
    Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) J Phys Chem B 109:14433Google Scholar
  25. 25.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9Google Scholar
  26. 26.
    Kabbabi A, Gloaguen F, Andolfatto F, Durand R (1994) J Electroanal Chem 373:251Google Scholar
  27. 27.
    Frelink T, Visscher W, Van Veen JAR (1995) J Electroanal Chem 382:65Google Scholar
  28. 28.
    Zeng JH, Lee JY, Zhou WJ (2006) Appl Catal A 308:99Google Scholar
  29. 29.
    Narayanan R, El-Sayed MA (2004) Nano Lett 4:1343Google Scholar
  30. 30.
    Baletto F, Ferrando R (2005) Rev Mod Phys 77:371Google Scholar
  31. 31.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Science 272:1924Google Scholar
  32. 32.
    Chu D, Gilman (1996) J Electrochem Soc 143:1685Google Scholar
  33. 33.
    Park K, Choi J, Kwon B, Lee S, Sung Y, Ha H, Hong S, Kim H, Wieckowski A (2002) J Phys Chem B 106:1869Google Scholar
  34. 34.
    Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Chem Mater 12:1622Google Scholar
  35. 35.
    Bonnemann H (1995) Stud Surf Sci Catal 91:185Google Scholar
  36. 36.
    Zhang X, Tsang K, Chan K (2004) J Electroanal Chem 573:1Google Scholar
  37. 37.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989Google Scholar
  38. 38.
    Ould Ely T, Pan C, Amiens C, Chaudret B, Dassenoy F, Lecante P, Casanove MJ, Mosset A, Respaund M, Broto JM (2000) J Phys Chem B 104:695Google Scholar
  39. 39.
    Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Angew Chem Int Ed 45:7824Google Scholar
  40. 40.
    Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) J Phys Chem B 109:188Google Scholar
  41. 41.
    Chen JY, Herricks T, Xia YN (2005) Angew Chem Int Ed 44:2589Google Scholar
  42. 42.
    Lim BW, Lu XM, Jiang MJ, Camargo PHC, Cho EC, Lee EP, Xia YN (2008) Nano Lett 8:4043Google Scholar
  43. 43.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316:732Google Scholar
  44. 44.
    Tiemann M (2008) Chem Mater 20:961Google Scholar
  45. 45.
    Jiang JH, Kucernak A (2004) Chem Mater 16:1362Google Scholar
  46. 46.
    Chen ZW, Waje M, Li WZ, Yan YS (2007) Angew Chem Int Ed 46:4060Google Scholar
  47. 47.
    Song YJ, Steen WA, Pena D, Jiang YB, Medforth CJ, Huo QS, Pincus JL, Qiu Y, Sasaki DY, Miller JE, Shelnutt JA (2006) Chem Mater 18:2335Google Scholar
  48. 48.
    Song Y, Garcia RM, Dorin RM, Wang HR, Qiu Y, Coker EN, Steen WA, Miller JE, Shelnutt JA (2007) Nano Lett 7:3650Google Scholar
  49. 49.
    Wang H, Xu CW, Cheng FL, Jiang SP (2007) Electrochem Commun 9:1212Google Scholar
  50. 50.
    Zhou HJ, Zhou WP, Adzic RR, Wong SS (2009) J Phys Chem C 113:5460Google Scholar
  51. 51.
    Garbarino S, Ponrouch A, Pronovost S, Guay D (2009) Electrochem Commun 11:1449Google Scholar
  52. 52.
    Bi YP, Lu GX (2009) Electrochem Commun 11:45Google Scholar
  53. 53.
    Zhang XY, Dong DH, Li D, Williams T, Wang HT, Webley PA (2009) Electrochem Commun 11:190Google Scholar
  54. 54.
    Zhang XY, Li D, Dong DH, Wang HT, Webley PA (2010) Mater Lett 64:1169Google Scholar
  55. 55.
    Gorzny ML, Walton AS, Evans SD (2010) Adv Funct Mater 20:1295Google Scholar
  56. 56.
    Zhao GY, Xu CL, Guo DJ, Li H, Li HL (2007) Appl Surf Sci 253:3242Google Scholar
  57. 57.
    Song YJ, Han SB, Park KW (2010) Mater Lett 64:1981Google Scholar
  58. 58.
    Ksar F, Surendran G, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Hagege A, Audonnet F, Remita H (2009) Chem Mater 21:1612Google Scholar
  59. 59.
    Kim JM, Joh H-I, Jo SM, Ahn DJ, Ha HY, Hong S-A, Kim S-K (2010) Electrochim Acta 55:4827Google Scholar
  60. 60.
    Choi SM, Kim JH, Jung JY, Yoon EY, Kim WB (2008) Electrochim Acta 53:5804Google Scholar
  61. 61.
    Garbarino S, Ponrouch A, Pronovost S, Gaudet J, Guay D (2009) Electrochem Commun 11:1924Google Scholar
  62. 62.
    Yuan Q, Zhou ZY, Zhuang J, Wang X (2010) Chem Mater 22:2395Google Scholar
  63. 63.
    Koenigsmann C, Zhou W, Adzic RR, Sutter E, Wong SS (2010) Nano Lett 10:2806Google Scholar
  64. 64.
    Liang ZX, Zhao TS (2007) J Phys Chem C 111:8128Google Scholar
  65. 65.
    Du SF (2010) J Power Sources 195:289Google Scholar
  66. 66.
    Wang L, Wang HJ, Nemoto Y, Yamauchi Y (2010) Chem Mater 22:2835Google Scholar
  67. 67.
    Song YJ, Hickner MA, Challa SR, Dorin RM, Garcia RM, Wang HR, Jiang YB, Li P, Qiu Y, van Swol F, Medforth CJ, Miller JE, Nwoga T, Kawahara K, Li W, Shelnutt JA (2009) Nano Lett 9:1534Google Scholar
  68. 68.
    Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YA (2009) Science 324:1302Google Scholar
  69. 69.
    Lim B, Jiang MJ, Yu T, Camargo PHC, Xia YN (2010) Nano Res 3:69Google Scholar
  70. 70.
    Lin ZH, Lin MH, Chang HT (2009) Chem Eur J 15:4656Google Scholar
  71. 71.
    Teng XW, Liang XY, Maksimuk S, Yang H (2006) Small 2:249Google Scholar
  72. 72.
    Sun SH, Yang DQ, Villers D, Zhang GX, Sacher E, Dodelet JP (2008) Adv Mater 20:571Google Scholar
  73. 73.
    Tiwari JN, Pan FM, Lin KL (2009) New J Chem 33:1482Google Scholar
  74. 74.
    Zhang H, Zhou W, Du P, Yang P, Wang C (2010) Electrochem Commun 12:882Google Scholar
  75. 75.
    Yin Z, Zheng HJ, Ma D, Bao XH (2009) J Phys Chem C 113:1001Google Scholar
  76. 76.
    Zhao DY, Yang PD, Huo QS, Chmelka BF, Stucky GD (1998) Curr Opin Solid State Mater Sci 3:111Google Scholar
  77. 77.
    Raimondi ME (1999) Liq Cryst 26:305Google Scholar
  78. 78.
    Elliott JM, Birkin PR, Bartlett PN, Attard GS (1999) Langmuir 15:7411Google Scholar
  79. 79.
    Elliott JM, Attard GS, Bartlett PN, Coleman BRB, Merckel DAS, Owen JR (1999) Chem Mater 11:3602Google Scholar
  80. 80.
    Kucernak A, Jiang JH (2003) Chem Eng J 93:81Google Scholar
  81. 81.
    Jiang JH, Kucernak A (2002) J Electroanal Chem 520:64Google Scholar
  82. 82.
    Jiang JH, Kucernak A (2002) J Electroanal Chem 533:153Google Scholar
  83. 83.
    Jiang JH, Kucernak A (2003) J Electroanal Chem 543:187Google Scholar
  84. 84.
    Jiang JH, Kucernak (2009) Electrochem Commun 11:623Google Scholar
  85. 85.
    Park EK, Lee JK, Kim YS, Kim GP, Baeck SH (2008) J Phys Chem Solids 69:1284Google Scholar
  86. 86.
    Planes GA, Garcia G, Pastor E (2007) Electrochem Commun 9:839Google Scholar
  87. 87.
    Bauer A, Wilkinson DP, Gyenge EL, Bizzotto D, Ye S (2009) J Electrochem Soc 156:B1169Google Scholar
  88. 88.
    Pugh DV, Dursun A, Corcoran SG (2003) J Mater Res 18:216Google Scholar
  89. 89.
    Huang JF, Sun IW (2004) Chem Mater 16:1829Google Scholar
  90. 90.
    Peng XS, Koczkur K, Nigro S, Chen AC (2004) Chem Commun 2872-2873Google Scholar
  91. 91.
    Liu HT, He P, Li ZY, Li JH (2006) Nanotechnology 17:2167Google Scholar
  92. 92.
    Yu JS, Ding Y, Xu CX, Inoue A, Sakurai T, Chen MW (2008) Chem Mater 20:4548Google Scholar
  93. 93.
    Wang XG, Wang WM, Qi Z, Zhao CC, Ji H, Zhang ZH (2009) Electrochem Commun 11:1896Google Scholar
  94. 94.
    Wang XG, Wang WM, Qi Z, Zhao CC, Ji H, Zhang ZH (2010) J Alloy Comp 508:463Google Scholar
  95. 95.
    Wang JP, Holt-Hindle P, MacDonald D, Thomas DF, Chen AC (2008) Electrochim Acta 53:6944Google Scholar
  96. 96.
    Xu YH, Lin XQ (2007) J Power Sources 170:13Google Scholar
  97. 97.
    Liu L, Pippel E, Scholz R, Gosele U (2009) Nano Lett 9:4352Google Scholar
  98. 98.
    Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) J Electroanal Chem 377:249Google Scholar
  99. 99.
    Perez J, Villullas HM, Gonzalez ER (1997) J Electroanal Chem 435:179Google Scholar
  100. 100.
    Markovic NM, Gasteiger HA, Ross PN (1995) J Phys Chem 99:3411Google Scholar
  101. 101.
    Herrero E, Franaszczuk K, Wieckowski A (1994) J Phys Chem 98:5074Google Scholar
  102. 102.
    Housmans THM, Wonders AH, Koper MTM (2006) J Phys Chem B 110:10021Google Scholar
  103. 103.
    Clavilier J (1987) J Electroanal Chem 236:87Google Scholar
  104. 104.
    Tong Y, Lu L, Zhang Y, Gao Y, Yin G, Osawa M, Ye S (2007) J Phys Chem C 111:18836Google Scholar
  105. 105.
    Macia MD, Campina JM, Herrero E, Feliu JM (2004) J Electroanal Chem 564:141Google Scholar
  106. 106.
    Kuzume A, Herrero E, Feliu JM (2007) J Electroanal Chem 599:333Google Scholar
  107. 107.
    Solla-Gullon J, Vidal-Iglesias FJ, Lopez-Cudero A, Garnier E, Feliu JM, Aldaz A (2006) Phys Chem Chem Phys 10:3689Google Scholar
  108. 108.
    Colmati F, Tremiliosi G, Gonzalez ER, Berna A, Herrero E, Feliu JM (2009) Phys Chem Chem Phys 11:9114Google Scholar
  109. 109.
    Lee SW, Chen SO, Sheng WC, Yabuuchi N, Kim YT, Mitani T, Vescovo E, Shao-Horn Y (2009) J Am Chem Soc 131:15669Google Scholar
  110. 110.
    Lee SW, Chen S, Suntivich J, Sasaki K, Adzic RR, Shao-Horn Y (2010) J Phys Chem Lett 1:1316Google Scholar
  111. 111.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109:12663Google Scholar
  112. 112.
    Wang C, Daimon H, Lee Y, Kim J, Sun S (2007) J Am Chem Soc 129:6974Google Scholar
  113. 113.
    Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) Angew Chem Int Ed 47:3588Google Scholar
  114. 114.
    Han SB, Song YJ, Lee JM, Kim JY, Park KW (2008) Electrochem Commun 10:1044Google Scholar
  115. 115.
    Xu D, Liu ZP, Yang HZ, Liu QS, Zhang J, Fang JY, Zou SZ, Sun K (2009) Angew Chem Int Ed 48:4217Google Scholar
  116. 116.
    Yang H, Dai L, Xu J, Fang J, Zou S (2010) Electrochim Acta 55:8000Google Scholar
  117. 117.
    Lu LL, Yin GP, Wang ZB, Gao YZ (2009) Electrochem Commun 11:1596Google Scholar
  118. 118.
    Nogami M, Koike R, Jalem R, Kawamura G, Yang Y, Sasaki Y (2010) J Phys Chem Lett 1:568Google Scholar
  119. 119.
    Kang YJ, Murray CB (2010) J Am Chem Soc 132:7568Google Scholar
  120. 120.
    Choi SI, Choi R, Han SW, Park JT (2010) Chem Commun 46:4950Google Scholar
  121. 121.
    Xiong YJ, Wiley B, Xia YN (2007) Angew Chem Int Ed 46:7157Google Scholar
  122. 122.
    Antolini E (2009) Appl Catal B 88:1Google Scholar
  123. 123.
    Zhang J, Yang HZ, Fang JY, Zou SZ (2010) Nano Lett 10:638Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Scuola di Scienza dei MaterialiGenoaItaly
  2. 2.Instituto de Química de São CarlosUSPSão CarlosBrazil

Personalised recommendations