Journal of Materials Science

, Volume 46, Issue 16, pp 5519–5526 | Cite as

Mechanical properties of cellular solids produced from hollow stainless steel spheres

  • Siddhartha RoyEmail author
  • Alexander Wanner
  • Tilmann Beck
  • Thomas Studnitzky
  • Günter Stephani


Mechanical properties of cellular hollow sphere structures are studied in this work. The material was fabricated by coating the metallic powder slurry on expanded polystyrol (EPS) spheres, drying, forming under compression, debinding, and final sintering of the spheres to each other. Longitudinal elastic wave velocities were measured using ultrasound phase spectroscopy while compression tests were carried out up to a homologous temperature of 0.6. Dependence of the relative Young’s modulus on the relative density is similar to conventional open-cell foams. Compression stress–strain plots show the three stages of elastic deformation, plateau, and densification. With increasing temperature the overall level of the compressive stress–strain plots shifts to lower stresses. The hollow sphere solids show slightly better high temperature strength in comparison to the base metal. However, due to the considerable scatter in the experimental data points, this improvement seems to be insignificant. Structural observations on samples deformed to within the plateau region clearly show the heterogeneous progress of deformation.


Foam Electrical Discharge Machine Hollow Sphere Cell Wall Material Plateau Stress 



Co-author SR is grateful to DAAD (Deutscher Akademischer Austausch Dienst) for funding his stay in Karlsruhe, Germany under DAAD—Masters sandwich Model Scholarship and thanks Prof. B. P. Kashyap (Department of Metallurgical Engineering and Materials Science, IIT Bombay) for his guidance and for introducing him to the topic of metallic foams. The authors also thank Dr. K. A. Weidenmann (IAM-WK, KIT) for cross-reading the manuscript and for giving valuable suggestions.


  1. 1.
    Banhart J (2001) Prog Mater Sci 46:559CrossRefGoogle Scholar
  2. 2.
    Stephani G, Andersen O, Göhler H, Kostmann C, Kümmel K, Quadbeck P, Reinfried M, Studnitzky T, Waag U (2006) Adv Eng Mater 8:847CrossRefGoogle Scholar
  3. 3.
    Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams, a design guide. Elsevier Science, USAGoogle Scholar
  4. 4.
    Miyoshi T, Itoh M, Akiyama S, Kitahara A (2000) Adv Eng Mater 2:179CrossRefGoogle Scholar
  5. 5.
    Korner C, Singer RF (2000) Adv Eng Mater 2:159CrossRefGoogle Scholar
  6. 6.
    Stöbener K, Rausch G (2009) J Mater Sci 44:1506. doi: CrossRefGoogle Scholar
  7. 7.
    Gibson LJ, Ashby MF (1988) Cellular solids, structure and properties. Cambridge University Press, UKGoogle Scholar
  8. 8.
    Sanders WS, Gibson LJ (2003) Mater Sci Eng A352:150CrossRefGoogle Scholar
  9. 9.
    Waag U, Schneider L, Löthman P, Stephani G (2000) Met Powder Rep 33:29Google Scholar
  10. 10.
    Friedl O, Motz C, Peterlik H, Puchegger S, Reger N, Pippan R (2008) Met Mater Trans 39B:135CrossRefGoogle Scholar
  11. 11.
    Lhuissier P, Fallet A, Salvo L, Brechet Y (2009) Mater Lett 63:113CrossRefGoogle Scholar
  12. 12.
    Fallet A, Lhuissier P, Salvo L, Brechet Y (2008) Adv Eng Mater 10:858CrossRefGoogle Scholar
  13. 13.
    Lim T-J, Smith B, McDowell DL (2002) Acta Mater 50:2867CrossRefGoogle Scholar
  14. 14.
    Sanders WS, Gibson LJ (2003) Mater Sci Eng A347:70CrossRefGoogle Scholar
  15. 15.
    Gasser S, Paun F, Cayzeele A, Bréchet Y (2003) Scr Mater 48:1617CrossRefGoogle Scholar
  16. 16.
    ASM International (1996) ASM specialty handbook on stainless steels. Materials Park, Ohio, USAGoogle Scholar
  17. 17.
    Wanner A (1998) Mater Sci Eng A248:35CrossRefGoogle Scholar
  18. 18.
    Scott GD, Kilgour DM (1969) J Phys D 2:863CrossRefGoogle Scholar
  19. 19.
    Banhart J, Baumeister J (1998) J Mater Sci 33:1431. doi: CrossRefGoogle Scholar
  20. 20.
    Haag M, Wanner A, Clemens H, Zhang P, Kraft O, Arzt E (2003) Met Mater Trans 34A:2809CrossRefGoogle Scholar
  21. 21.
    Lefebvre L-P, Blouin A, Rochon S-M, Bureau MN (2006) Adv Eng Mater 8:841CrossRefGoogle Scholar
  22. 22.
    Sugimura Y, Meyer J, He MY, Bart-Smith H, Grenstedt J, Evans AG (1997) Acta Mater 45:5245CrossRefGoogle Scholar
  23. 23.
    Spaeder CE, Domis WF, Brickner KG (1973) High-nitrogen austenitic stainless steels. ASTM STP 522, American Society for Testing Materials, p 35Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Siddhartha Roy
    • 1
    • 2
    Email author
  • Alexander Wanner
    • 1
  • Tilmann Beck
    • 3
    • 4
  • Thomas Studnitzky
    • 5
  • Günter Stephani
    • 5
  1. 1.Institut für Angewandte MaterialienKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  3. 3.Forschungszentrum JülichJülichGermany
  4. 4.Institut für Werkstoffkunde IUniversität Karlsruhe (TH)KarlsruheGermany
  5. 5.Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)DresdenGermany

Personalised recommendations