Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5503–5511 | Cite as

Swelling of 316L austenitic stainless steel induced by plasma nitriding

  • J. C. Stinville
  • C. TemplierEmail author
  • P. Villechaise
  • L. Pichon
Article

Abstract

Swelling of 316L austenitic stainless steel plasma nitrided at 400°C under floating potential has been investigated using electron back scattered diffraction and white-light interferometry. Swelling of individual grains strongly depends on their crystallographic orientation, similarly to the thickness of the nitrided layer. After 1 h of treatment, swelling is maximum for the 〈001〉 oriented grains and minimum for the 〈111〉 oriented grains. After 8 and 33 h of nitriding, the maximum of swelling is observed in the grains having their normal direction at about 15° from the 〈001〉 orientation. These results are discussed on the basis of plastic strain after comparison with calculated swellings of the 〈001〉 and 〈111〉 oriented grains, using the thickness of the nitrided layer deduced from the trapping–detrapping diffusion model and a rough estimation of the plastic strain. The satisfactory agreement between experimental and calculated swellings supports the idea that swelling results from the lattice expansion due to the incorporation of nitrogen plus an elastic strain and a plastic strain. For individual grains of the 316L matrix, nitriding leads to a tensile-like elongation of high magnitude (around 20%) and it might be the origin of the lattice rotations which were previously observed after nitriding.

Keywords

Residual Stress Nitrided Austenitic Stainless Steel Grain Orientation Nitrided Layer 

Abbreviations

ASS

Austenitic stainless steel

NRA

Nuclear reaction analysis

EBSD

Electron backscattered diffraction

NRA

Nuclear reaction analysis

GDOES

Glow discharge optical emission spectroscopy

FEG

Field emission gun

SEM

Scanning electron microscope

WLI

White light interferometry

ND

Normal direction

IPF

Inverse pole figure

IQ

Image quality

References

  1. 1.
    Reis R, Maliska A, Borges P (2011) J Mater Sci 46:846. doi: https://doi.org/10.1007/s1085301048273 CrossRefGoogle Scholar
  2. 2.
    Nascimento F, Lepienski C, Foerster C, Assmann A, Da Silva S, Siqueira M, Chinelatto A (2009) J Mater Sci 44:1045. doi: https://doi.org/10.1007/s108530083211z CrossRefGoogle Scholar
  3. 3.
    Sun Y, Li X, Bell T et al (1999) J Mater Sci 34:4793. doi: https://doi.org/10.1023/A:1004647423860 CrossRefGoogle Scholar
  4. 4.
    Lei M (1999) J Mater Sci 34:5975. doi: https://doi.org/10.1023/A:1004728711459 CrossRefGoogle Scholar
  5. 5.
    Gontijo L, Machado R, Miola E, Casteletti L, Alcântara N, Nascente P et al (2006) Mater Sci Eng A 431:315CrossRefGoogle Scholar
  6. 6.
    Stinville J, Villechaise P, Templier C, Rivière J, Drouet M et al (2010) Acta Mater 58:2814CrossRefGoogle Scholar
  7. 7.
    Templier C, Stinville J, Villechaise P, Renault P, Abrasonis G, Rivière J, Martinavičius A, Drouet M et al (2010) Surf Coat Technol 204:2551CrossRefGoogle Scholar
  8. 8.
    Winther G, Margulies L, Schmidt S, Poulsen H et al (2004) Acta Mater 52:2863CrossRefGoogle Scholar
  9. 9.
    Han J, Kim D, Jee K, Oh K et al (2004) Mater Sci Eng A 387–389:60CrossRefGoogle Scholar
  10. 10.
    Christiansen T, Somers M et al (2006) Metallu Mater Trans A 37:675CrossRefGoogle Scholar
  11. 11.
    He H, Czerwiec T, Dong C, Michel H et al (2003) Surf Coat Technol 163–164:331CrossRefGoogle Scholar
  12. 12.
    Martinavičius A, Abrasonis G, Möller W, Templier C, Riviére JP, Declémy A, Chumlyakov Y (2009) J Appl Phys 105:093502CrossRefGoogle Scholar
  13. 13.
    Parascandola S, Möller W, Williamson D et al (2000) Appl Phys Lett 76:2194CrossRefGoogle Scholar
  14. 14.
    Christiansen T, Dahl K, Somers M et al (2008) Mater Sci Technol 24:159CrossRefGoogle Scholar
  15. 15.
    Perrière J, Siejka J, Rémili N, Laurent A, Straboni A, Vuillermoz B et al (1986) J Appl Phys 59:2752CrossRefGoogle Scholar
  16. 16.
    Xiaolei X, Liang W, Zhiwei Y, Zukun H et al (2005) Surf Coat Technol 192:220CrossRefGoogle Scholar
  17. 17.
    Leroy C, Czerwiec T, Gabet C, Belmonte T, Michel H et al (2001) Surf Coat Technol 142–144:241CrossRefGoogle Scholar
  18. 18.
    Xu X, Yu Z, Wang L, Qiang J, Hei Z et al (2003) Surf Coat Technol 162:242CrossRefGoogle Scholar
  19. 19.
    Grigull S, Parascandola S et al (2000) J Appl Phys 88:6925CrossRefGoogle Scholar
  20. 20.
    Möller W, Parascandola S, Kruse O, Günzel R, Richter E et al (1999) Surf Coat Technol 116–119:1CrossRefGoogle Scholar
  21. 21.
    Clausen B, Lorentzen T, Bourke M, Daymond M et al (1999) Mater Sci Eng A 259:17CrossRefGoogle Scholar
  22. 22.
    Stinville J, Tromas C, Villechaise P, Templier C et al (2011) Scr Mater 64:37CrossRefGoogle Scholar
  23. 23.
    Oddershede J, Christiansen T, Ståhl K, Somers M et al (2008) J Mater Sci 43:5358. doi: https://doi.org/10.1007/s10853-008-2791-y CrossRefGoogle Scholar
  24. 24.
    Oddershede J, Christiansen T, Ståhl K, Somers M et al (2010) Scr Mater 62:290CrossRefGoogle Scholar
  25. 25.
    Taylor G (1938) J Inst Met 62:307Google Scholar
  26. 26.
    Winther G (2008) Mater Sci Eng A 483–484:40CrossRefGoogle Scholar
  27. 27.
    Christiansen T, Somers M et al (2009) Metall Mater Trans A 40:1791CrossRefGoogle Scholar
  28. 28.
    Czerwiec T, He H, Marcos G, Thiriet T, Weber S, Michel H et al (2009) Plasma Processes Polymers 6:401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. C. Stinville
    • 1
    • 2
  • C. Templier
    • 1
    Email author
  • P. Villechaise
    • 1
  • L. Pichon
    • 1
  1. 1.Institut PPRIMECNRS UPR 3346, Université de Poitiers & ENSMAFuturoscope-ChasseneuilFrance
  2. 2.Ecole de Technologie SupérieureMontrealCanada

Personalised recommendations