Journal of Materials Science

, Volume 46, Issue 16, pp 5495–5502 | Cite as

Microstructure evolution in undercooled Co80Pd20 alloys

  • Shengyin Zhou
  • Rui HuEmail author
  • Li Jiang
  • Jinshan Li
  • Hongchao Kou
  • Hui Chang
  • Lian Zhou


High undercooling has been achieved in Co80Pd20 melts by employing the method of molten glass denucleating combined with cyclic superheating, and the microstructure evolution with undercooling was systematically investigated. Within the achieved range of undercooling, 0–415 K, two kinds of grain refinements have been observed in the solidification microstructures. The three critical undercoolings are 72, 95, and 142 K, respectively. When undercooling is less than 72 K, the coarse dendritic morphology is formed, which is similar to the conventional as-cast microstructure. The first grain refinement occured in the range of undercooling, 72–95 K can be attributed to the breakup of dendrite-skeleton owing to remelting. When undercooling locates within 95–142 K, highly developed directional fine dendrite can be obtained because the severe solute trapping weakens the effect of solute diffusion during the dendrite growth. The second grain refinement occurred when undercooling exceeds the critical undercooling (∆T* = 142 K), the formation of fined equiaxed microstructure can be ascribed to the stress that originates from the extremely rapid solidification process, which resulted in the dendrite fragmentation finally.


Rapid Solidification Process Solidification Microstructure Single Phase Alloy High Undercooling Coarse Dendrite 



The authors are grateful to the financial support of the Program for New Century Excellent Talents in University (NCET-07-0690), National Basic Research Program of China (No. 2011CB610404) and the 111 Project (B08040).


  1. 1.
    Herlach DM (1994) Mater Sci Eng R Rep 12:177CrossRefGoogle Scholar
  2. 2.
    Walker JL (1959) In: Pierre GRS (ed) The physical chemistry of process metallurgy (part 2), Inter science, New York, p 845Google Scholar
  3. 3.
    Schwarz M, Karma A, Eckler K, Herlach DM (1994) Phys Rev Lett 73:1380CrossRefGoogle Scholar
  4. 4.
    Li JF, Yang GC, Zhou YH (1998) Mater Res Bull 33:141CrossRefGoogle Scholar
  5. 5.
    Dragnevski K, Cochrane RF, Mullis AM (2004) Mater Sci Eng A 375–377:479CrossRefGoogle Scholar
  6. 6.
    Chen YZ, Liu F, Yang GC, Liu N, Yang CL, Xie H, Zhou YH (2008) Mater Charact 59:412CrossRefGoogle Scholar
  7. 7.
    Horvay G (1965) Int J Heat Mass Transf 8:195CrossRefGoogle Scholar
  8. 8.
    Jackson KA, Hunt JD, Uhlmann DR (1969) J Mater Sci Lett 245:407Google Scholar
  9. 9.
    Liu F, Yang GC, Guo XF (2001) Mater Sci Eng A 311:54CrossRefGoogle Scholar
  10. 10.
    Kobayashi KF, Hogan LM (1978) Met Forum 1:165Google Scholar
  11. 11.
    Karma A (1998) Int J Non-Equilibrium Process 11:201Google Scholar
  12. 12.
    Mullis AM, Cochrane RF (1997) J Appl Phys 82:1380CrossRefGoogle Scholar
  13. 13.
    Eckler K, Norman AF, Gärtner F, Greer AL, Herlach DM (1997) J Cryst Growth 173:528CrossRefGoogle Scholar
  14. 14.
    Li JF, Liu YC, Lu YL, Yang GC, Zhou YH (1998) J Cryst Growth 192:462CrossRefGoogle Scholar
  15. 15.
    Chen YZ, Yang GC, Liu F, Liu N, Xie H, Zhou YH (2005) J Cryst Growth 282:490CrossRefGoogle Scholar
  16. 16.
    Liu F, Yang GC (2001) J Cryst Growth 231:295–305CrossRefGoogle Scholar
  17. 17.
    Holland-Moritz D, Herlach DM, Spaepen F (2007) Superlattice Microst 41:196CrossRefGoogle Scholar
  18. 18.
    Massalski TB (1986) Binary Alloy Phase Diagrams. American Society for Metals, Metals ParkGoogle Scholar
  19. 19.
    Wilde G, Görler GP, Willnecker R (1996) Appl Phys Lett 69:2995CrossRefGoogle Scholar
  20. 20.
    Schenk T, Holland-Moritz D, Bender W, Herlach DM (1999) J Non-Cryst Sol 250–252:694CrossRefGoogle Scholar
  21. 21.
    Albrecht T, Bührer C, Fähnle M, Maier K, Platzek D, Reske J (1997) Appl Phys A 65:215CrossRefGoogle Scholar
  22. 22.
    Schenk T, Holland-Moritz D, Herlach DM (2000) Europhys Lett 50:402CrossRefGoogle Scholar
  23. 23.
    Herlach DM, Holland-Moritz D, Schenk T, Schneider K, Wilde G, Boni O, Fransaer J, Spaepen F (1999) J Non-Cryst Sol 250–252:271CrossRefGoogle Scholar
  24. 24.
    Wilde G, Görler GP, Willnecker R (1996) Appl Phys Lett 68:2953CrossRefGoogle Scholar
  25. 25.
    Reske J, Herlach DM, Keuser F, Platzek D (1995) Phys Rev Lett 75:737CrossRefGoogle Scholar
  26. 26.
    Herlach DM, Eckler K, Karma A, Schwarz M (2001) Mater Sci Eng A 304–306:20CrossRefGoogle Scholar
  27. 27.
    Liu N, Liu F, Yang GC, Chen YZ, Chen D, Yang CL, Zhou YH (2007) Physica B 387:151CrossRefGoogle Scholar
  28. 28.
    Boettinger WJ, Coriell SR, Trivedi R (1988) In: Mehrabian R, Parrish PA (eds) Rapid solidification processing: principles and technologies IV. Claitor’s, Baton Rouge, p 13Google Scholar
  29. 29.
    Aziz MJ (1982) J Appl Phys 53:1154CrossRefGoogle Scholar
  30. 30.
    Piccone TJ, Wu Y, Shiohara Y, Flemings MC (1987) Metall Trans A 18:925CrossRefGoogle Scholar
  31. 31.
    Zhou SY, Hu R, Li JS, Chang H, Kou HC, Zhou L (2011) Mater Sci Eng A 528:973CrossRefGoogle Scholar
  32. 32.
    Lu SY, Li JF, Zhou YH (2007) J Cryst Growth 309:103CrossRefGoogle Scholar
  33. 33.
    Volkmann T, Wilde G, Willnecker R, Herlach DM (1998) J Appl Phys 83:3028CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shengyin Zhou
    • 1
  • Rui Hu
    • 1
    Email author
  • Li Jiang
    • 1
  • Jinshan Li
    • 1
  • Hongchao Kou
    • 1
  • Hui Chang
    • 1
  • Lian Zhou
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations