Journal of Materials Science

, Volume 46, Issue 16, pp 5447–5453 | Cite as

Processing issues related to the bi-dimensional ionic conductivity of BIMEVOX ceramics

  • Paul FuiererEmail author
  • Russell Maier
  • Ulla Röder-Roith
  • Ralf Moos


Bismuth vanadate, Bi4V2O11, and its doped variations, Bi4(Co0.15V0.85)2O11, Bi4(Cu0.1V0.9)2O11, and Bi4(Cu0.05Ti0.05V0.90)2O11 are investigated with respect to relative processability and total conductivity. In conventionally prepared (pressure-less sintered) ceramic disks, the single-substitution compounds show signs of exaggerated grain growth with significant c-axis preferred orientation. The doubly substituted Bi4(Cu0.05Ti0.05V0.90)2O11 is found to have the widest processing window, resulting in sintered monoliths with the highest relative density and no preferred orientation. It also shows the highest conductivity (7 × 102 (Ωcm)1) at 500 °C, as measured by impedance spectroscopy. Activation energies for conduction of the four compounds are reported and found to be comparable to earlier study. Hot forged samples of Bi4(Cu0.05Ti0.05V0.90)2O11 are prepared for the first time, with only moderate texturing achieved. We assert that the lack of texture in Bi4(Cu0.05Ti0.05V0.90)2O11 is responsible for the higher conductivity measured through the sample thickness when compared to Bi4(Co0.15V0.85)2O11, Bi4(Cu0.1V0.9)2O11 and other related compounds.


BiVO4 Molten Salt Synthesis Bismuth Vanadate Substitution Compound Relative Bulk Density 



Funding from the Deutscher Akademischer Austauschdienst (DAAD) to support a summer research visit by the principal author to the University of Bayreuth is gratefully acknowledged.


  1. 1.
    Pirovano C, Vannier RN, Capoen E, Nowogrocki G, Boivin JC, Mairesse G, Anne M, Dooryhee E, Strobel P (2003) Solid State Ionics 159:181CrossRefGoogle Scholar
  2. 2.
    Chetouani A, Taouk B B, Bordes-Richard E, Abi-Aad E, Aboukais A (2003) Appl Catal A 252:269CrossRefGoogle Scholar
  3. 3.
    Cho H, Sakai G, Shimanoe K, Yamazoe N (2005) Sensors Actuators B 109:307CrossRefGoogle Scholar
  4. 4.
    Kida T T, Minami T, Kishi S, Yasa M, Shimanoe K, Yamazoe N (2009) Sensors Actuators B 137:147CrossRefGoogle Scholar
  5. 5.
    Wang J, Ji B, Zhu X, Cong Y, Yang W (2009) Chin J Catal 30:926CrossRefGoogle Scholar
  6. 6.
    Abrahams I, Krok F (2003) Solid State Ionics 157:139CrossRefGoogle Scholar
  7. 7.
    Abraham F, Boivin J, Mairesse G, Nowogrocki G (1990) Solid State Ionics 40–41:934CrossRefGoogle Scholar
  8. 8.
    Muller C, Anne M, Bacmann M, Bonnet M (1998) J Solid State Chem 141:241CrossRefGoogle Scholar
  9. 9.
    Abraham F, Debreuille-Gresse M, Mairesse G, Nowogrocki G (1988) Solid State Ionics 28–30:529CrossRefGoogle Scholar
  10. 10.
    Varma K, Subbanna G, Row T, Rao C (1990) J Mater Res 5:2718CrossRefGoogle Scholar
  11. 11.
    Lazure S, Vannier R, Nowogrocki G, Mairesse G, Muller C, Anne M, Stobel P (1995) J Mater Chem 5:1395CrossRefGoogle Scholar
  12. 12.
    Yaremchenko A, Kharton V, Naumovich E, Marques F (2002) Mater Chem Phys 77:552CrossRefGoogle Scholar
  13. 13.
    Paydar M, Hadian A, Fafilek G (2004) J Mater Sci 39:1357. doi: CrossRefGoogle Scholar
  14. 14.
    Emel’yanova Y, Tsygankova E, Petrova S, Buyanova E, Zhukovskii V (2007) Russ J Electrochem 43:737CrossRefGoogle Scholar
  15. 15.
    Muller C, Chateigner D, Anne M, Bacmann M, Fouletier J, Rango P (1996) J Phys D 29:3106CrossRefGoogle Scholar
  16. 16.
    Kim S, Miyayama M (1997) Solid State Ionics 104:295CrossRefGoogle Scholar
  17. 17.
    Shantha K, Varma K (1997) Mater Res Bull 32:1581CrossRefGoogle Scholar
  18. 18.
    Pell J, Ying J, Zur Loye H (1995) Mater Lett 25:157CrossRefGoogle Scholar
  19. 19.
    Hervoches C, Steil M, Muccillo R (2004) Solid State Sci 6:173CrossRefGoogle Scholar
  20. 20.
    Castro A, Millan P, Ricote J, Pardo L (2000) J Mater Chem 10:767CrossRefGoogle Scholar
  21. 21.
    Roy B, Fuierer P (2009) J Mater Res 24:3078CrossRefGoogle Scholar
  22. 22.
    Roy B, Fuierer P (2009) J Am Ceram Soc 92:520CrossRefGoogle Scholar
  23. 23.
    Simner S, Suarez-Sandoval D, Mackenzie J, Dunn B (1997) J Am Ceram Soc 80:2563CrossRefGoogle Scholar
  24. 24.
    Steil M, Fouletier J, Kleitz M, Labrune P (1999) J Eur Ceram Soc 19:815CrossRefGoogle Scholar
  25. 25.
    Steil M, Ratajczak F, Capoen E, Pirovano C, Vannier R, Mairesse G (2005) Solid State Ionics 176:2305CrossRefGoogle Scholar
  26. 26.
    Powder Diffraction File card # 14-0688Google Scholar
  27. 27.
    Powder Diffraction File # 039-0105Google Scholar
  28. 28.
    Dygas J, Krok F, Bogusz W, Kurek P, Reiselhuber K, Breitner M (1994) Solid State Ionics 70–71:239CrossRefGoogle Scholar
  29. 29.
    Kezionis A, Bogusz W, Krok F, Dygas J, Orliukas A, Abrahams I, Gebicki W (1999) Solid State Ionics 119:145CrossRefGoogle Scholar
  30. 30.
    Krok F, Bogusz W, Kurek P, Jakubowski W, Dygas J, Bangobango D (1994) Solid State Ionics 70–71:211CrossRefGoogle Scholar
  31. 31.
    Lotgering F (1959) J Inorg Nucl Chem 9:113CrossRefGoogle Scholar
  32. 32.
    Fuierer P, Newnham R (1991) J. Amer. Ceram. Soc. 74:2876CrossRefGoogle Scholar
  33. 33.
    Fuierer P, Shrout T, Newnham R (1992) In: Smart materials fabrication and materials for micro-electro-mechanical systems, MRS Symposium Proceedings, vol 276, Pittsburgh, p 51Google Scholar
  34. 34.
    Nichtawitz T, Fuierer P (1994) In: Pandey R, Liu M, Safari A (eds) Proceedings of 9th international symposium on applications of ferroelectrics. Pennsylvania USA, p 126Google Scholar
  35. 35.
    Shen Y, Clarke D, Fuierer P (2008) Appl Phys Lett 93:102907CrossRefGoogle Scholar
  36. 36.
    Cahn J (1962) Acta Metall 10:789CrossRefGoogle Scholar
  37. 37.
    Rahaman M, Zhou Y (1995) J Eur Ceram Soc 15:939CrossRefGoogle Scholar
  38. 38.
    Rahaman M (2007) In: Ceramic processing. CRC Press, Boca Raton, p 398Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paul Fuierer
    • 1
    Email author
  • Russell Maier
    • 2
  • Ulla Röder-Roith
    • 3
  • Ralf Moos
    • 3
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA
  2. 2.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Functional Materials LaboratoryUniversity of BayreuthBayreuthGermany

Personalised recommendations