Journal of Materials Science

, Volume 46, Issue 16, pp 5423–5431 | Cite as

Structural evolution of the intergrowth bismuth-layered Bi7Ti4NbO21

  • X. Gao
  • H. GuEmail author
  • Y.-X. Li
  • Z.-G. Yi
  • M. Čeh
  • K. Žagar


A series of intergrowth bismuth-layered ferroelectric Bi7Ti4NbO21 materials are reactive-sintered at 1050 to 1150 °C from Bi3TiNbO9 and Bi4Ti3O12 parent phases to infer their structural characters and microstructure relations. Various types of stacking faults are revealed in the intergrowth structure with extra Bi3TiNbO9 or Bi4Ti3O12 layer(s) by high-resolution transmission electron microscopy; some faults with even spacing form locally new intergrowths of Bi10Ti5Nb2O30 and Bi11Ti7NbO33. Co-growth of Bi7Ti4NbO21 epitaxially grown onto the remaining Bi4Ti3O12 grains is found in the low temperature sintered samples, while the Bi4Ti3O12 co-growth onto the intergrowth grains is also found in the high temperature samples. Both co-growths are created from intergranular melts during a solution-precipitation process, which is consistent with the anisotropic growth of the intergrowth structure and the presence of a Bi-rich intergranular phase. The populations of different stacking faults are found to decrease with the increase of their thickness and also with the increase of sintering temperature, indicating that they are remnants survived from dissolution to imbed via precipitation into the intergrowth structure, which should be created from the smaller but much abundant one-layered remnants of the parent phases. This leads to a new model of structural reorganization by such one-layered units to form the intergrowth structure in this solution-precipitation process. Such incomplete dissolution is initiated by the preferential melting of interleaved [Bi2O2]2+ sheets to enable the exfoliation of perovskite layers to re-order into the intergrowth structure. This reorganization model re-defines the reactive sintering as an evolution process of Bismuth-layered structures.


Sinter Temperature Growth Fault Parent Phase High Sinter Temperature Layered Fault 



The authors acknowledge the financial support from the Chinese National Natural Science Foundation (Grant No. 50932007) and the Ministry of Science and Technology of China through 973-Project (Grant No. 2009CB613305), as well as the travel support from the bilateral cooperative research program between China and Slovenia (project No. 07-06). The authors also wish to thank Drs. Xianhao Wang, Juanjuan Xing, and Sašo Šturm for helpful discussions.


  1. 1.
    Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Nature 401:682CrossRefGoogle Scholar
  2. 2.
    de Araujo CAP, Cuchiaro JD, Mcmillan LD, Scott MC, Scott JF (1995) Nature 374:627CrossRefGoogle Scholar
  3. 3.
    Aurivillius B (1949) Ark Kemi 1:463Google Scholar
  4. 4.
    Frit B, Mercurio JP (1992) J Alloys Compd 188:27CrossRefGoogle Scholar
  5. 5.
    Noguchi Y, Miyayama M, Kudo T (2000) Appl Phys Lett 77:3639CrossRefGoogle Scholar
  6. 6.
    Goshima Y, Noguchi Y, Miyayama M (2002) Appl Phys Lett 81:2226CrossRefGoogle Scholar
  7. 7.
    Shibuya A, Noda M, Okuyama M, Fujisawa H, Shimizu M (2003) Appl Phys Lett 82:784CrossRefGoogle Scholar
  8. 8.
    Kikuchi T (1976) J Less Common Met 48:319CrossRefGoogle Scholar
  9. 9.
    Kikuchi T, Watanabe A, Uchida K (1977) Mater Res Bull 12:299CrossRefGoogle Scholar
  10. 10.
    Maalal R, Mercurio D, Trolliard G, Mercurio JP (1998) Ann Chim Sci Mat 23:247CrossRefGoogle Scholar
  11. 11.
    Mercurio D, Trolliard G, Hansen T, Mercurio JP (2000) Int J Inorg Mater 2:397CrossRefGoogle Scholar
  12. 12.
    Boullay Ph, Mercurio D (2004) Integr Ferroelectr 62:149CrossRefGoogle Scholar
  13. 13.
    Zhang LN, Li GR, Zhao SC, Zheng LY, Yin QR (2005) Key Eng Mater 255:280Google Scholar
  14. 14.
    Yi ZG, Wang Y, Li YX, Yin QR (2006) J Appl Phys 99:114101CrossRefGoogle Scholar
  15. 15.
    Rao CNR, Thomas JM (1985) Acc Chem Res 18:113CrossRefGoogle Scholar
  16. 16.
    Rao CNR (1985) Bull Mater Sci 7:155CrossRefGoogle Scholar
  17. 17.
    Horiuchi S, Kikuchi T, Goto M (1977) Acta Cryst 33:701CrossRefGoogle Scholar
  18. 18.
    Chu F, Damjanovic D, Steiner O, Setter N (1995) J Am Ceram Soc 78:3142CrossRefGoogle Scholar
  19. 19.
    Subbanna GN, Ganapathi L (1987) Bull Mater Sci 9:29CrossRefGoogle Scholar
  20. 20.
    Hu JF, Gu H, Chen ZM, Tan SH, Jiang DL, Rühle M (2007) Acta Mater 55:5666CrossRefGoogle Scholar
  21. 21.
    Xing JJ, Gu H, Gloter A, Shen H, Pan XM, Wang PC (2007) Acta Mater 55:5323CrossRefGoogle Scholar
  22. 22.
    Poterala SF, Chang Y, Clark T, Meyer RJ Jr, Messing GL (2010) Chem Mater 22:2061CrossRefGoogle Scholar
  23. 23.
    Schaak RE, Mallouk TE (2002) Chem Mater 14:1455CrossRefGoogle Scholar
  24. 24.
    Boullay Ph, Trolliard G, Mercurio D, Perez-Mato JM, Elcoro L (2002) J Solid State Chem 164:252CrossRefGoogle Scholar
  25. 25.
    Sagalowicz L, Chu F, Martin PD, Damjanovic D (2000) J Appl Phys 88:7258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • X. Gao
    • 1
    • 2
  • H. Gu
    • 1
    Email author
  • Y.-X. Li
    • 1
  • Z.-G. Yi
    • 1
  • M. Čeh
    • 3
  • K. Žagar
    • 3
  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.Graduate School Chinese Academy of ScienceBeijingChina
  3. 3.Department of Nanostructured MaterialsJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations