Advertisement

Journal of Materials Science

, Volume 46, Issue 16, pp 5394–5399 | Cite as

Processing and magneto-electric properties of sol–gel-derived Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 2-2 type multilayered films

  • Li Wang
  • Ruzhong ZuoEmail author
  • Hailin SuEmail author
  • Min Shi
  • Yudong Xu
  • Guang Wu
  • Guiyang Yu
Article

Abstract

Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 (PZT–NZFO) multilayered thin films with various volume fractions of the PZT phase (100, 74, 58, 48, 33, and 0%) were prepared on Pt/Ti/SiO2/Si substrates using sol–gel spin-coating method. X-ray diffraction shows polycrystalline structure and scanning electron microscopy reveals good multilayer morphology of the composite thin film as annealed at 700 °C in air. The thickness of the composite films was estimated in the range of ~400 to ~600 nm. The ferroelectric and magnetic properties were measured as function of the volume fractions of the PZT phase. The magnetoelectric (ME) effect was investigated under various bias magnetic fields. The maximum ME voltage coefficient (αE = dE/dH) is 278 mV/cmOe for the composite film with the volume fractions of the PZT phase of ~48%.

Keywords

Ferrite Composite Film CoFe2O4 Multilayered Film Nickel Ferrite 

Notes

Acknowledgements

This study was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200803591037) and partially by the National Natural Science Foundation of China (50972035) and a Program for New Century Excellent Talents in University, State Education Ministry (NCET-08-0766).

References

  1. 1.
    Bichurin MI, Petrov VM, Kiliba YV (2002) Phys Rev B 66:134404CrossRefGoogle Scholar
  2. 2.
    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759CrossRefGoogle Scholar
  3. 3.
    Wang YJ, Zhao XY, Jiao J, Zhang QH, Di WN, Luo HS, Leung CM, Or SW (2010) J Alloys Compd 496:L4CrossRefGoogle Scholar
  4. 4.
    Zeng M, Or SW, Chan HLW (2010) J Alloys Compd 490:L5CrossRefGoogle Scholar
  5. 5.
    Zhang JX, Dai JY, Chow CK, Sun CL, Lo VC, Chan HLW (2008) Appl Phys Lett 92:022901CrossRefGoogle Scholar
  6. 6.
    Dix N, Skumryev V, Laukhin V, Fàbrega L, Sánchez F, Fontcuberta J (2007) J Mater Sci Eng B 144:127CrossRefGoogle Scholar
  7. 7.
    Yi SW, Kim SS, Kim JW, Jo HK, Do D, Kim WJ (2009) Thin Solid Films 517:6737CrossRefGoogle Scholar
  8. 8.
    Wan JG, Wang XW, Wu YJ, Zeng M, Wang Y, Jiang H, Zhou WQ, Wang GH, Liu JM (2005) Appl Phys Lett 86:122501CrossRefGoogle Scholar
  9. 9.
    Srinivasan G, DeVreugd CP, Hayes R, Bichurin MI, Petrov VM (2004) Magnetoelectr Interact Phenom Cryst 164:35CrossRefGoogle Scholar
  10. 10.
    Ma YG, Cheng WN, Ning M, Ong CK (2007) Appl Phys Lett 90:152911CrossRefGoogle Scholar
  11. 11.
    Levin I, Li JH, Slutsker JL, Roytburd AL (2006) Adv Mater 18:2044CrossRefGoogle Scholar
  12. 12.
    He HC, Wang J, Zhou JP, Nan CW (2007) Adv Funct Mater 17:1333CrossRefGoogle Scholar
  13. 13.
    Delgado E, Ostos C, Martínez-Sarrión ML, Mestres L, Lederman D, Prieto P (2009) Mater Chem Phys 113:702CrossRefGoogle Scholar
  14. 14.
    Li YJ, Chen XM, Lin YQ, Tang YH (2006) J Eur Ceram Soc 26:2839CrossRefGoogle Scholar
  15. 15.
    Guo YY, Zhou JP, Liu P (2010) Curr Appl Phys 10:1092CrossRefGoogle Scholar
  16. 16.
    Jo HK, Kim SS, Do D (2009) J Sol-Gel Sci Technol 49:336CrossRefGoogle Scholar
  17. 17.
    He HC, Zhou JP, Wang J, Nan CW (2006) Appl Phys Lett 89:052904CrossRefGoogle Scholar
  18. 18.
    Deng CY, Zhang Y, Ma J, Lin YH, Nan CW (2007) J Appl Phys 102:074114CrossRefGoogle Scholar
  19. 19.
    Fina I, Dix N, Laukhin V, Fàbrega L, Sánchez F, Fontcuberta J (2009) J Magn Magn Mater 321:1795CrossRefGoogle Scholar
  20. 20.
    Scott JF (2008) J Phys Condens Matter 20:021001CrossRefGoogle Scholar
  21. 21.
    O’Handley RC (2000) Modern magnetic materials: principles and applications, chap 7. Wiley, New YorkGoogle Scholar
  22. 22.
    Zhai JY, Cai N, Liu L, Lin YH, Nan CW (2003) Mater Sci Eng B 99:329CrossRefGoogle Scholar
  23. 23.
    Ryu J, Priya S, Uchino K, Kim H (2002) J Electroceram 8:107CrossRefGoogle Scholar
  24. 24.
    Zi ZF, Lei HC, Zhu XD, Wang B, Zhang SB, Zhu XB, Song WH, Sun YP (2010) Mater Sci Eng B 167:70CrossRefGoogle Scholar
  25. 25.
    Sathaye SD, Patil KR, Kulkarni SD, Bakre PP, Pradhan SD, Sarwade BD, Shintre SN (2003) J Mater Sci 38:29. doi: https://doi.org/10.1023/A:1021101529855 CrossRefGoogle Scholar
  26. 26.
    Huang XH, Chen ZH (2004) J Magn Magn Mater 280:37CrossRefGoogle Scholar
  27. 27.
    Zeng M, Wan JG, Wang Y, Yu H, Liu JM, Jiang XP, Nan CW (2004) J Appl Phys 95:8069CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Electro Ceramics & Devices, School of Materials Science and Engineering, Hefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations