Journal of Materials Science

, Volume 46, Issue 15, pp 5294–5304 | Cite as

Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes

  • Shaojun ChenEmail author
  • Jinlian Hu
  • Haitao Zhuo
  • Shiguo Chen


Shape memory polymers are attractive for both science and industrial application. In this article, a series of pyridine-containing supramolecular shape memory polyurethanes (Py-SMPUs) with various diphenylmethane diisocyanate–butanediol (MDI–BDO) contents are synthesized from the 1,6-hexamethylene diisocyanate (HDI), N,N-bis(2-hydroxylethyl) isonicotinamide (BINA), BDO, and MDI. Then, they are investigated systematically using FT-IR, DSC, DMA, WAXD, and shape memory testing. The results show that the addition of MDI–BDO segment improves the strength of hydrogen bonding of Py-SMPUs. It promotes the formation of hard domains, but not influences the phase-separation structure, the intensity, and distribution of physical netpoints. In addition, the MDI–BDO segment improves the rubber modulus and drops the energy loss of Py-SMPUs. However, it does not influence the shape memory behaviors which are mainly influenced by the BINA content. If the BINA content is beyond 30 wt%, good shape memory effect can be achieved in the BINA–HDI–BDO–MDI system; and high shape recovery force can be obtained by increasing the MDI–BDO segment.


Shape Memory Dynamical Mechanical Analysis Hard Segment Soft Segment Shape Recovery 



This study was financially supported from the Natural Science Foundation of China (No. 50803037)), Natural Science Foundation of Guangdong (No. 2008211), and the PhD studentship of Hong Kong Polytechnic University. The authors also would like to thank Prof. Jean-Marie Lehn, the Nobel Prize Laureate in 1987, for his guidance.


  1. 1.
    Nji J, Li GQ (2010) Polymer 51:6021CrossRefGoogle Scholar
  2. 2.
    Zhang H, Wang HT, Zhong W, Du QG (2009) Polymer 50:1596CrossRefGoogle Scholar
  3. 3.
    Behl M, Razzaq MY, Lendlein A (2010) Adv Eng Mater 22:3388CrossRefGoogle Scholar
  4. 4.
    Meng H, Hu JL (2010) J Intell Mater Syst Struct 21:859CrossRefGoogle Scholar
  5. 5.
    Hu JL, Chen SJ (2010) J Mater Chem 20:3346CrossRefGoogle Scholar
  6. 6.
    Yang D, Huang W, Yu JH, Jiang JS, Zhang LY, Xie MR (2010) Polymer 51:5100CrossRefGoogle Scholar
  7. 7.
    Ji FL, Hu JL, Li TC, Wong YW (2007) Polymer 48:5133CrossRefGoogle Scholar
  8. 8.
    Wang XH, Zhang W, Lan X, Liu YJ, Leng JS (2007) Basic properties and application of shape memory polymer composite to deployable hinge for solar arrays. International Conference on Smart Materials and Nanotechnology in Engineering, Pts 1–3 6423:42356–42356. doi:
  9. 9.
    Chen SJ, Cao Q, Liu PS (2006) Acta Polym Sin 1:1CrossRefGoogle Scholar
  10. 10.
    Chen SJ, Cao Q, Jing B, Cai YL, Liu PS, Hu JL (2006) J Appl Polym Sci 102:5224CrossRefGoogle Scholar
  11. 11.
    Zhuo HT, Hu JL, Chen SJ, Yeung LP (2008) J Appl Polym Sci 109:406CrossRefGoogle Scholar
  12. 12.
    Chen SJ, Hu JL, Liu YQ, Liem HM, Zhu Y, Liu YJ (2007) J Polym Sci Polym Phys 45:444CrossRefGoogle Scholar
  13. 13.
    Chen SJ, Hu JL, Zhuo HT, Zhu Y (2008) Mater Lett 62:4088CrossRefGoogle Scholar
  14. 14.
    Zhuo HT, Hu JL, Chen SJ (2008) Mater Lett 62:2078CrossRefGoogle Scholar
  15. 15.
    Chen SJ, Hu JL, Liu YQ, Liem HM, Zhu Y, Meng QH (2007) Polym Int 56:1128CrossRefGoogle Scholar
  16. 16.
    Kim BK (1999) Appl Mech Eng 4:435Google Scholar
  17. 17.
    Li FK, Hou JN, Zhu W, Zhang X, Xu M, Luo XL, Ma DZ, Kim BK (1996) J Appl Polym Sci 62:631CrossRefGoogle Scholar
  18. 18.
    Chun BC, Chong MH, Chung YC (2007) J Mater Sci 42:6524. doi: CrossRefGoogle Scholar
  19. 19.
    Mondal S, Hu JL (2007) J Elast Plast 39:81CrossRefGoogle Scholar
  20. 20.
    Ping P, Wang WS, Chen XS, Jing XB (2007) J Polym Sci Polym Phys 45:557CrossRefGoogle Scholar
  21. 21.
    Wang WS, Ping P, Chen XS, Jing XB (2007) Polym Int 56:840CrossRefGoogle Scholar
  22. 22.
    Zhu Y, Hu J, Yeung K (2009) Acta Biomater 5:3346CrossRefGoogle Scholar
  23. 23.
    Zhang S, Yu ZJ, Govender T, Luo HY, Li BJ (2008) Polymer 49:3205CrossRefGoogle Scholar
  24. 24.
    Li JH, Viveros JA, Wrue MH, Anthamatten M (2007) Adv Eng Mater 19:2851CrossRefGoogle Scholar
  25. 25.
    Luo HY, Liu Y, Yu ZJ, Zhang S, Li BJ (2008) Biomacromolecules 9:2573CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Hu JL, Liu YJ (2009) Eur Phys J E 28:3CrossRefGoogle Scholar
  27. 27.
    Chen SJ, Hu JL, Yuen CW, Chan LK (2009) Mater Lett 63:1462CrossRefGoogle Scholar
  28. 28.
    Chen SJ, Hu JL, Yuen CWM, Chan LK (2009) Polymer 50:4424CrossRefGoogle Scholar
  29. 29.
    Chen SJ, Hu JL, Zhuo HT, Yuen CWM, Chan LK (2010) Polymer 51:240CrossRefGoogle Scholar
  30. 30.
    Chen SJ, Hu JL, Yuen CWM, Chan LK (2010) Polym Int 59:529CrossRefGoogle Scholar
  31. 31.
    Zhang CL, Hu JL, Chen SJ, Ji FL (2010) J Mol Model 16:1391CrossRefGoogle Scholar
  32. 32.
    Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Macromolecules 34:6431CrossRefGoogle Scholar
  33. 33.
    Ratna D, Karger-Kocsis J (2008) J Mater Sci 43:254. doi: CrossRefGoogle Scholar
  34. 34.
    Cao Q, Chen SJ, Hu JL, Liu PS (2007) J Appl Polym Sci 106:993CrossRefGoogle Scholar
  35. 35.
    Robert WS, Stuart LC (1973) Macromolecules 6:48CrossRefGoogle Scholar
  36. 36.
    Wang WS, Ping P, Chen XS, Jing XB (2006) Eur Polym J 42:1240CrossRefGoogle Scholar
  37. 37.
    Zhou J, Wang HJ (2003) Chin J Geochem 22:1CrossRefGoogle Scholar
  38. 38.
    Cao Q, Liu PS (2006) Polym Bull 57:889CrossRefGoogle Scholar
  39. 39.
    Ping P, Wang WS, Chen XS, Jing XB (2005) Biomacromolecules 6:587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shaojun Chen
    • 1
    Email author
  • Jinlian Hu
    • 2
  • Haitao Zhuo
    • 2
  • Shiguo Chen
    • 1
  1. 1.Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenChina
  2. 2.Institute of Textiles and Clothing, Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations