Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5267–5277 | Cite as

An integral method to analyze the glass-crystal transformation kinetics by differential scanning calorimetry under non-isothermal regime. Application to the crystallization of the Ge0.08Sb0.15Se0.77 chalcogenide glass

  • J. VázquezEmail author
  • J. L. Cárdenas-Leal
  • R. González-Palma
  • D. García-G. Barreda
  • P. L. López-Alemany
  • P. Villares
Article

Abstract

In this article, a theoretical procedure has been developed for the kinetic study of the glass-crystal transformations under continuous heating regime in materials involving formation and growth of nuclei, obtaining the corresponding parameters: kinetic exponent, activation energy, and pre-exponential frequency. It is an integral procedure, which is based on a transformation rate independent of the thermal history of the material and assumes that the quoted rate depends only on the transformed fraction, x, across the f(x) function, and temperature, considering that these variables are independent ones. Therefore, the transformation rate is expressed as the product of two separable functions of absolute temperature and the transformed fraction. The quoted f(x) function corresponds to a theoretical method that we have developed and recently published, whose details are given in the Sect. “Basic theory” of this study. The above-mentioned integral procedure considers the same pair of temperatures for the different heating rates and obtains a constant value for temperature integral and, therefore, a plot of a function of the transformed fraction versus the reciprocal of the heating rate leads to a straight line with an intercept of zero, if the value of kinetic exponent is correctly chosen. The process may be repeated for other pairs of temperatures and, consequently, other straight lines will be obtained. By using different values of kinetic exponent for each of the quoted lines, it is taken the best correlation coefficient to choose the quoted exponent more suitable. On the other hand, by using the first mean value theorem to approach the temperature integral, one obtains a relationship between a function of the temperature and other function of the transformed fraction. The logarithmic form of the quoted relationship leads to a straight line, whose slope and intercept allow the obtaining of the activation energy and of the pre-exponential frequency. In addition, this study applies the quoted procedure to the analysis of the crystallization kinetics of the Ge0.08Sb0.15Se0.77 glassy alloy resulting in ranges of variation both of the kinetic exponent, n, with the temperature and of the activation energy, E, with the crystallized fraction, which contain the values of n and E, obtained according to the already quoted theoretical method, that we have developed and recently published. This fact shows the reliability of the theoretical procedure described in this article to analyze the glass-crystal transformation kinetics of glassy alloy.

Keywords

Differential Scanning Calorimetry Glass Transition Temperature Crystallization Kinetic Chalcogenide Glass Glassy Alloy 

Notes

Acknowledgements

The authors are grateful to Dr. Industrial Engineer Teodoro Vázquez for its contribution to this article with a computer program, and to the Junta de Andalucía (PAI/Excel//FQM154) for its financial support.

References

  1. 1.
    Klement K, Willens RH Jr, Duwez P (1960) Nature 187:869CrossRefGoogle Scholar
  2. 2.
    Kempen ATW, Sommer F, Mittemeijer EJ (2002) J Mater Sci 37:1321. doi: https://doi.org/10.1023/A:1014556109351 CrossRefGoogle Scholar
  3. 3.
    Inoue A (1999) Mater Sci Eng A 267:171CrossRefGoogle Scholar
  4. 4.
    Inoue A (2004) Mater Sci Eng A 375–377:16CrossRefGoogle Scholar
  5. 5.
    Tkatch VI, Limanovsky AI, Kameneva VY (1997) J Mater Sci 32:5669. doi: https://doi.org/10.1023/A:1018601330212 CrossRefGoogle Scholar
  6. 6.
    Hong SH, Messing GL (1997) J Am Ceram Soc 80:1551CrossRefGoogle Scholar
  7. 7.
    Zu JQ, Bo ZL, Dong DK (1996) Phys Chem Glasses 37:264Google Scholar
  8. 8.
    Christian JW (1975) The theory of transformations in metals and alloys, 2nd edn. Pergamon Press, New YorkGoogle Scholar
  9. 9.
    Kelton KF (1991) Solid State Phys 45:75CrossRefGoogle Scholar
  10. 10.
    Abdel-Rahim MA, Ibrahim MM, Dongol M, Gaber A (1992) J Mater Sci 27:4685. doi: https://doi.org/10.1007/BF01166006 CrossRefGoogle Scholar
  11. 11.
    Vázquez J, González-Palma R, López-Alemany PL, Villares P, Jiménez-Garay R (2007) J Phys Chem Solids 68:855CrossRefGoogle Scholar
  12. 12.
    Weinberg MC, Kapral R (1989) J Chem Phys 91:7146CrossRefGoogle Scholar
  13. 13.
    Frade JR (1998) J Am Ceram Soc 81:2654CrossRefGoogle Scholar
  14. 14.
    Ray CS, Fang X, Day DE (2000) J Am Ceram Soc 83:865CrossRefGoogle Scholar
  15. 15.
    López-Alemany PL, Vázquez J, Villares P, Jiménez-Garay R (2003) Mater Lett 57:2722CrossRefGoogle Scholar
  16. 16.
    Johnson WA, Mehl KF (1939) Trans Am Inst Mining Met Eng 135:416Google Scholar
  17. 17.
    Avrami M (1939) J Chem Phys 7:1103CrossRefGoogle Scholar
  18. 18.
    Avrami M (1940) J Chem Phys 8:212CrossRefGoogle Scholar
  19. 19.
    Avrami M (1941) J Chem Phys 9:177CrossRefGoogle Scholar
  20. 20.
    Kissinger HE (1957) Anal Chem 29:1702CrossRefGoogle Scholar
  21. 21.
    Henderson DW (1979) J Therm Anal 15:325CrossRefGoogle Scholar
  22. 22.
    De Bruijin TJW, De Jong WA, Van Den Berg PJ (1981) Thermochim Acta 45:315CrossRefGoogle Scholar
  23. 23.
    Yinnon H, Uhlmann DR (1983) J Non-Cryst Solids 54:253CrossRefGoogle Scholar
  24. 24.
    Marotta A, Saiello S, Branda F, Buri A (1982) J Mater Sci 17:105. doi: https://doi.org/10.1007/BF00809040 CrossRefGoogle Scholar
  25. 25.
    Kozmidis-Petrovic AF, Strbac GR, Strbac DD (2007) J Non-Cryst Solids 353:2014CrossRefGoogle Scholar
  26. 26.
    Henderson DW (1979) J Non-Cryst Solids 30:301CrossRefGoogle Scholar
  27. 27.
    Popescu C (1996) Thermochim Acta 285:309CrossRefGoogle Scholar
  28. 28.
    Málek J (1995) Thermochim Acta 267:61CrossRefGoogle Scholar
  29. 29.
    Cárdenas-Leal JL, Vázquez J, López-Alemany PL, Villares P, Jiménez-Garay R (2009) J Alloys Compd 471:44CrossRefGoogle Scholar
  30. 30.
    Graydon JW, Thorpe SJ, Kirk DW (1994) Acta Metall 42:3163CrossRefGoogle Scholar
  31. 31.
    Starink MJ, Zahara A-M (1998) Acta Mater 46:3381CrossRefGoogle Scholar
  32. 32.
    Vázquez J, González-Palma R, López-Alemany PL, Villares P, Jiménez-Garay R (2005) J Phys Chem Solids 66:1264CrossRefGoogle Scholar
  33. 33.
    Vázquez J, Wagner C, Villares P, Jiménez-Garay R (1996) Acta Mater 44:4807CrossRefGoogle Scholar
  34. 34.
    Pekin Elmer, PC Series, Thermal Analysis System, DSC7 Differential Scanning Calorimeter, Operator’s Manual, Norwalk, Connecticut, 1989Google Scholar
  35. 35.
    Gao YQ, Wang W, Zheng FQ, Liu X (1986) J Non-Cryst Solids 81:135CrossRefGoogle Scholar
  36. 36.
    Vázquez J, López-Alemany PL, Villares P, Jiménez-Garay R (1998) Mater Chem Phys 57:162CrossRefGoogle Scholar
  37. 37.
    Kasap SO, Juhasz C (1985) J Chem Soc Faraday Trans. 2(81):811CrossRefGoogle Scholar
  38. 38.
    López-Alemany PL, Vázquez J, Villares P, Jiménez-Garay R (1999) J Alloys Compd 285:185CrossRefGoogle Scholar
  39. 39.
    Wang HR, Gao YL, Ye YF, Min GH, Chen Y, Teng XY (2003) J Alloys Compd 353:200CrossRefGoogle Scholar
  40. 40.
    Pratap A, Lad KN, Rao TLS, Majmudar P, Saxena NS (2004) J Non-Cryst Solids 345–346:178CrossRefGoogle Scholar
  41. 41.
    Matusita K, Komatsu T, Yolota R (1984) J Mater Sci 19:291. doi: https://doi.org/10.1007/BF00553020 CrossRefGoogle Scholar
  42. 42.
    Joraid AA, Alamri SN, Abu-Sehly AA (2008) J Non-Cryst Solids 354:3380CrossRefGoogle Scholar
  43. 43.
    Joraid AA (2007) Thermochim Acta 456:1CrossRefGoogle Scholar
  44. 44.
    Vyazovkin S, Dranca I (2006) Macromol Chem Phys 207:20CrossRefGoogle Scholar
  45. 45.
    Fisher JC, Turnbull D (1949) J Chem Phys 17:71CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Vázquez
    • 1
    Email author
  • J. L. Cárdenas-Leal
    • 1
  • R. González-Palma
    • 1
  • D. García-G. Barreda
    • 1
  • P. L. López-Alemany
    • 2
  • P. Villares
    • 1
  1. 1.Departamento de Física de la Materia Condensada, Facultad de CienciasUniversidad de CádizPuerto RealSpain
  2. 2.Departamento de Química-Física, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto RealSpain

Personalised recommendations