Journal of Materials Science

, Volume 46, Issue 15, pp 5237–5244 | Cite as

Preparation and characterisation of ceramic-faced metal–ceramic interpenetrating composites for impact applications

  • Hong ChangEmail author
  • Jon Binner
  • Rebecca Higginson
  • Paul Myers
  • Peter Webb
  • Gus King


This article accesses the impact performance of ceramic-faced, metal–ceramic interpenetrating composites (IPCs) produced in situ from infiltrating ceramic foams with a molten aluminium–magnesium alloy. The approach had two variations, viz., the production of a metal bond between a ceramic front face and backing IPC and the creation of a ceramic bond. The impact performance of metal-bonded IPCs was evaluated using both split Hopkinson’s pressure bar (SHPB) and depth of penetration (DoP) techniques. With a 4-mm thick Al2O3 front face and an 8-mm thick IPC backing, the DoP was zero. In one case, a sample survived fundamentally intact with only spall damage to the dense Al2O3 front face. The resulting damage was thoroughly assessed using a range of techniques, including polarized light microscopy, scanning electron microscopy (SEM), 3D MicroCT and transmission electron microscopy (TEM). The metal phase deformed as a result of the formation of large numbers of dislocations, whilst the ceramic phase accommodated the deformation via localised cracking. Metal bridges across the cracks formed, increasing the damage tolerance of the IPCs. The metal bond between the ceramic front face and the IPC was also observed to withstand the impact of the armour piercing rounds without any sign of debonding occurring.


Foam Front Face Interfacial Debonding Ceramic Foam Ceramic Preform 



The authors gratefully acknowledge funding from the EPSRC in the UK; Dyson Thermal Technologies, Sheffield, UK, for supplying the alumina foams and Permali (Gloucester) Limited, Gloucester, UK for the ballistic testing.


  1. 1.
    Tjong SC, Ma ZY (2000) Mater Sci Eng R 29:49CrossRefGoogle Scholar
  2. 2.
    Lear MH, Sankar BV (1999) J Mater Sci 34:4181. doi: CrossRefGoogle Scholar
  3. 3.
    Tasdemirci A, Hall IW (2007) Int J Imp Eng 34:1797CrossRefGoogle Scholar
  4. 4.
    Gooch WAC, Burkins BHC, Palicka MS, Rubin R, Ravichandran JR (1999) Mater Sci Forum 308–311:614CrossRefGoogle Scholar
  5. 5.
    Bhagat RB, Amateau MF, House MB, Meinert KC, Nisson P (1992) J Compos Mater 26:1578CrossRefGoogle Scholar
  6. 6.
    Manoharan M, Lewandowski JJ (1990) Acta Metall Mater 38:489CrossRefGoogle Scholar
  7. 7.
    Rawal SP (2001) JOM 53:14CrossRefGoogle Scholar
  8. 8.
    Lee WS, Sue WC (2000) J Compos Mater 34:1821CrossRefGoogle Scholar
  9. 9.
    Doong JL, Lin SNS, Marcus HL (1992) J Mater Sci 27:1369. doi: CrossRefGoogle Scholar
  10. 10.
    Niu LB, Hojamberdiev M, Xu YH, Wu H (2010) J Mater Sci 45:4532. doi: CrossRefGoogle Scholar
  11. 11.
    Lo SHJ, Dionne S, Sahoo M, Hawthorne HM (1992) J Mater Sci 27:5681. doi: CrossRefGoogle Scholar
  12. 12.
    Clarke DR (1992) J Am Ceram Soc 75:739CrossRefGoogle Scholar
  13. 13.
    Mortensen A (2000) Comprehensive composite materials. In: Clyne TW (ed) Metal matrix composites. Elsevier, Amsterdam, p 521Google Scholar
  14. 14.
    Chang H, Higginson RL, Binner JGP. J Mater Sci. doi: CrossRefGoogle Scholar
  15. 15.
    Calderon NR, Voytovych R, Narciso J, Eustathopoulos N (2010) J Mater Sci 45:4345. doi: CrossRefGoogle Scholar
  16. 16.
    Chang H, Higginson RL, Binner JGP (2009) J Microsc 233:132CrossRefGoogle Scholar
  17. 17.
    Soundararajan R, Kuhn G, Atisivan R, Bose S, Bandyopadhyay A (2001) J Am Ceram Soc 84:509CrossRefGoogle Scholar
  18. 18.
    Liu JW, Zheng ZX, Wang JM, Wu YC, Tang WM, Lü J (2008) J Alloy Compd 465:239CrossRefGoogle Scholar
  19. 19.
    Wang SR, Wang YZ, Wang Y, Geng HR, Chi CQ (2007) J Mater Sci 42:7812. doi: CrossRefGoogle Scholar
  20. 20.
    Chang H, Binner JGP, Higginson RL (2011) Mater Sci Eng A. doi: CrossRefGoogle Scholar
  21. 21.
    Binner JGP, Chang H, Higginson RL (2009) J Eur Ceram Soc 29:837CrossRefGoogle Scholar
  22. 22.
    Sepulveda P, Binner JGP (1999) J Eur Ceram Soc 19:2059CrossRefGoogle Scholar
  23. 23.
    Kolsky H (1949) Proc Phys Soc Lond Ser B 62:676CrossRefGoogle Scholar
  24. 24.
    Madhu V, Ramanjaneyulu K, Balakrishna Bhat T, Gupta NK (2005) J Impact Eng 32:337CrossRefGoogle Scholar
  25. 25.
    Sherman D, Ben-Shushan T (1998) Int J Imp Eng 21:245CrossRefGoogle Scholar
  26. 26.
    López-Puente J, Arias A, Zaera R, Navarro C (2005) Int J Imp Eng 32:321CrossRefGoogle Scholar
  27. 27.
    Straßburger E, Lexow B, Beffort O, Jeanquartier R (2001) 19th international symposium of ballistics, Interlaken, SwitzerlandGoogle Scholar
  28. 28.
    Lee M, Yoo YH (2001) Int J Imp Eng 25:819CrossRefGoogle Scholar
  29. 29.
    Forquin P, Tran L, Louvigné PF, Rota L, Hild F (2003) Int J Imp Eng 28:1061CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hong Chang
    • 1
    • 4
    Email author
  • Jon Binner
    • 1
  • Rebecca Higginson
    • 1
  • Paul Myers
    • 2
  • Peter Webb
    • 3
  • Gus King
    • 3
  1. 1.Department of MaterialsLoughborough UniversityLeicestershireUK
  2. 2.Dyson Thermal TechnologiesSheffieldUK
  3. 3.Permali (Gloucester) LtdGloucesterUK
  4. 4.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations